Skip to main content

Advertisement

Log in

Acetylcholine Receptor-Induced Experimental Myasthenia Gravis: What Have We Learned from Animal Models After Three Decades?

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Myasthenia gravis (MG) is an autoimmune disease caused by an immunological response against the acetylcholine receptor (AChR) at the neuromuscular junction. Anti-AChR antibodies induce degradation of the receptor, activation of complement cascade and destruction of the post-synaptic membrane, resulting in a functional reduction of AChR availability. The pathophysiological role of autoantibodies (auto-Abs) and T helper lymphocytes has been studied in the experimental autoimmune MG (EAMG) models. EAMG models have been employed to investigate the factors involved in the development of MG and to suggest new therapies aimed to preventing or modulating the ongoing disease. EAMG can be induced in susceptible mouse and rat strains, which develop clinical symptoms such as muscular weakness and fatigability, mimicking the human disease. Two major types of EAMG can be induced, passive and active EAMG. Passive transfer MG models, involving the injection of auto-Abs, are helpful for studying the role of complement molecules and their regulatory proteins, which can prevent neuromuscular junction degradation. Active models, induced by immunization, are employed for the analysis of antigen-specific immune responses and their modulation in order to improve disease progression. In this review, we will concentrate on the main pathogenic mechanisms of MG, focusing on recent findings on EAMG experimental models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

aa:

Amino acids

AChR:

Acetylcholine receptor

TAChR:

Torpedo californica AChR

auto-Abs:

Autoantibodies

BMSC:

Bone marrow stromal cells

DC:

Dendritic cells

MG:

Myasthenia gravis

MIR:

Main immunogenic region

EAMG:

Experimental autoimmune MG

CFA:

Complete Freund’s adjuvant

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

IgG:

Immunoglobulin G type

MAC:

Membrane attack complex

NMJ:

Neuromuscular junction

PBL:

Peripheral blood lymphocytes

PIX:

Pixantrone (BBR2778)

SCID:

Severe combined immunodeficiency

TGF-β1:

Transforming growth factor 1-beta

Treg:

Regulatory T-cell

References

  • Abramsky O, Tarrab-Hazdai R, Aharonov A et al (1976) Immunosuppression of experimental autoimmune myasthenia gravis by hydrocortisone and azathioprine. J Immunol 117:225–228

    PubMed  CAS  Google Scholar 

  • Antozzi C, Gemma M, Regi B et al (1991) A short plasma exchange protocol is effective in severe myasthenia gravis. J Neurol 238:103–107

    Article  PubMed  CAS  Google Scholar 

  • Arce S, Cassese G, Hauser A et al (2002) The role of long-lived plasma cells in autoimmunity. Immunobiology 206:558–562

    Article  PubMed  Google Scholar 

  • Aricha R, Feferman T, Fuchs S et al (2008) Ex vivo generated regulatory T cells modulate experimental autoimmune myasthenia gravis. J Immunol 180:2132–2139

    PubMed  CAS  Google Scholar 

  • Aricha R, Feferman T, Scott HS et al (2011) The susceptibility of Aire(−/−) mice to experimental myasthenia gravis involves alterations in regulatory T cells. J Autoimmun 36:16–24

    Article  PubMed  CAS  Google Scholar 

  • Baggi F, Andreetta F, Caspani E et al (1999) Oral administration of an immunodominant T-cell epitope downregulates Th1/Th2 cytokines and prevents experimental myasthenia gravis. J Clin Invest 104:1287–1295

    Article  PubMed  CAS  Google Scholar 

  • Baggi F, Annoni A, Ubiali F et al (2004) Breakdown of tolerance to a self-peptide of acetylcholine receptor alpha-subunit induces experimental myasthenia gravis in rats. J Immunol 172:2697–2703

    PubMed  CAS  Google Scholar 

  • Balandina A, Lecart S, Dartevelle P et al (2005) Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood 105:735–741

    Article  PubMed  CAS  Google Scholar 

  • Balasa B, Deng C, Lee J et al (1997) Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice. J Exp Med 186:385–391

    Article  PubMed  CAS  Google Scholar 

  • Balasa B, Deng C, Lee J et al (1998) The Th2 cytokine IL-4 is not required for the progression of antibody-dependent autoimmune myasthenia gravis. J Immunol 161:2856–2862

    PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  • Barchan D, Souroujon MC, Im SH et al (1999) Antigen-specific modulation of experimental myasthenia gravis: nasal tolerization with recombinant fragments of the human acetylcholine receptor alpha-subunit. Proc Natl Acad Sci USA 96:8086–8091

    Article  PubMed  CAS  Google Scholar 

  • Bellone M, Ostlie N, Lei SJ et al (1991) The I-Abm12 mutation, which confers resistance to experimental myasthenia gravis, drastically affects the epitope repertoire of murine CD4+ cells sensitized to nicotinic acetylcholine receptor. J Immunol 147:1484–1491

    PubMed  CAS  Google Scholar 

  • Berman PW, Patrick J (1980a) Experimental myasthenia gravis. A murine system. J Exp Med 151:204–223

    Article  PubMed  CAS  Google Scholar 

  • Berman PW, Patrick J (1980b) Linkage between the frequency of muscular weakness and loci that regulate immune responsiveness in murine experimental myasthenia gravis. J Exp Med 152:507–520

    Article  PubMed  CAS  Google Scholar 

  • Biesecker G, Gomez CM (1989) Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. J Immunol 142:2654–2659

    PubMed  CAS  Google Scholar 

  • Biesecker G, Koffler D (1988) Resistance to experimental autoimmune myasthenia gravis in genetically inbred rats. Association with decreased amounts of in situ acetylcholine receptor-antibody complexes. J Immunol 140:3406–3410

    PubMed  CAS  Google Scholar 

  • Chamberlain-Banoub J, Neal JW, Mizuno M et al (2006) Complement membrane attack is required for endplate damage and clinical disease in passive experimental myasthenia gravis in Lewis rats. Clin Exp Immunol 146:278–286

    Article  PubMed  CAS  Google Scholar 

  • Christadoss P (1988) C5 gene influences the development of murine myasthenia gravis. J Immunol 140:2589–2592

    PubMed  CAS  Google Scholar 

  • Christadoss P, Poussin M, Deng C (2000) Animal models of myasthenia gravis. Clin Immunol 94:75–87

    Article  PubMed  CAS  Google Scholar 

  • Conti-Fine BM, Milani M, Kaminski HJ (2006) Myasthenia gravis: past, present, and future. J Clin Invest 116:2843–2854

    Article  PubMed  CAS  Google Scholar 

  • Dau PC (1981) Response to plasmapheresis and immunosuppressive drug therapy in sixty myasthenia gravis patients. Ann NY Acad Sci 377:700–708

    Article  PubMed  CAS  Google Scholar 

  • Deng C, Goluszko E, Tuzun E et al (2002) Resistance to experimental autoimmune myasthenia gravis in IL-6-deficient mice is associated with reduced germinal center formation and C3 production. J Immunol 169:1077–1083

    PubMed  CAS  Google Scholar 

  • Drachman DB (2003) Autonomic “myasthenia”: the case for an autoimmune pathogenesis. J Clin Invest 111:797–799

    PubMed  CAS  Google Scholar 

  • Drachman DB, Angus CW, Adams RN et al (1978) Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. N Engl J Med 298:1116–1122

    Article  PubMed  CAS  Google Scholar 

  • Duan RS, Adikari SB, Huang YM et al (2004) Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells. Neurobiol Dis 16:461–467

    Article  PubMed  CAS  Google Scholar 

  • Eldefrawi ME (1978) Experimental autoimmune myasthenia gravis: the rabbit as an animal model. Fed Proc 37:2823–2827

    PubMed  CAS  Google Scholar 

  • Engel AG, Fumagalli G (1982) Mechanisms of acetylcholine receptor loss from the neuromuscular junction. Ciba Found Symp (90):197–224

  • Engel AG, Lambert EH, Howard FM (1977) Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis: ultrastructural and light microscopic localization and electrophysiologic correlations. Mayo Clin Proc 52:267–280

    PubMed  CAS  Google Scholar 

  • Fattorossi A, Battaglia A, Buzzonetti A et al (2005) Circulating and thymic CD4 CD25 T regulatory cells in myasthenia gravis: effect of immunosuppressive treatment. Immunology 116:134–141

    Article  PubMed  CAS  Google Scholar 

  • Goluszko E, Deng C, Poussin MA et al (2002) Tumor necrosis factor receptor p55 and p75 deficiency protects mice from developing experimental autoimmune myasthenia gravis. J Neuroimmunol 122:85–93

    Article  PubMed  CAS  Google Scholar 

  • Gomez CM, Richman DP (1983) Anti-acetylcholine receptor antibodies directed against the alpha-bungarotoxin binding site induce a unique form of experimental myasthenia. Proc Natl Acad Sci USA 80:4089–4093

    Article  PubMed  CAS  Google Scholar 

  • Gomez AM, Van Den Broeck J, Vrolix K et al (2010) Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction. Autoimmunity 43:353–370

    Article  PubMed  CAS  Google Scholar 

  • Gomez AM, Vrolix K, Martinez–Martinez P et al (2011) Proteasome inhibition with bortezomib depletes plasma cells and autoantibodies in experimental autoimmune myasthenia gravis. J Immunol 186:2503–2513

    Article  PubMed  CAS  Google Scholar 

  • Hill M, Moss P, Wordsworth P et al (1999) T cell responses to D-penicillamine in drug-induced myasthenia gravis: recognition of modified DR1:peptide complexes. J Neuroimmunol 97:146–153

    Article  PubMed  CAS  Google Scholar 

  • Hoch W, McConville J, Helms S et al (2001) Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7:365–368

    Article  PubMed  CAS  Google Scholar 

  • Hoedemaekers AC, Verschuuren JJ, Spaans F et al (1997a) Age-related susceptibility to experimental autoimmune myasthenia gravis: immunological and electrophysiological aspects. Muscle Nerve 20:1091–1101

    Article  PubMed  CAS  Google Scholar 

  • Hoedemaekers AC, van Breda Vriesman PJ, De Baets MH (1997b) Myasthenia gravis as a prototype autoimmune receptor disease. Immunol Res 16:341–354

    Article  PubMed  CAS  Google Scholar 

  • Im SH, Barchan D, Fuchs S et al (1999) Suppression of ongoing experimental myasthenia by oral treatment with an acetylcholine receptor recombinant fragment. J Clin Invest 104:1723–1730

    Article  PubMed  CAS  Google Scholar 

  • Janssen SP, Phernambucq M, Martinez–Martinez P et al (2008) Immunosuppression of experimental autoimmune myasthenia gravis by mycophenolate mofetil. J Neuroimmunol 201–202:111–120

    Google Scholar 

  • Kaminski HJ, Kusner LL, Richmonds C et al (2006) Deficiency of decay accelerating factor and CD59 leads to crisis in experimental myasthenia. Exp Neurol 202:287–293

    Article  PubMed  CAS  Google Scholar 

  • Karachunski PI, Ostlie NS, Okita DK et al (1999) Interleukin-4 deficiency facilitates development of experimental myasthenia gravis and precludes its prevention by nasal administration of CD4+ epitope sequences of the acetylcholine receptor. J Neuroimmunol 95:73–84

    Article  PubMed  CAS  Google Scholar 

  • Karachunski PI, Ostlie NS, Monfardini C et al (2000) Absence of IFN-gamma or IL-12 has different effects on experimental myasthenia gravis in C57BL/6 mice. J Immunol 164:5236–5244

    PubMed  CAS  Google Scholar 

  • Karussis DM, Lehmann D, Brenner T et al (1994) Immunomodulation of experimental autoimmune myasthenia gravis with linomide. J Neuroimmunol 55:187–193

    Article  PubMed  CAS  Google Scholar 

  • Kong QF, Sun B, Bai SS et al (2009a) Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Th1/Th2/Th17/Treg cell subsets through the secretion of TGF-beta. J Neuroimmunol 207:83–91

    Article  PubMed  CAS  Google Scholar 

  • Kong QF, Sun B, Wang GY et al (2009b) BM stromal cells ameliorate experimental autoimmune myasthenia gravis by altering the balance of Th cells through the secretion of IDO. Eur J Immunol 39:800–809

    Article  PubMed  CAS  Google Scholar 

  • Lennon VA, Lindstrom JM, Seybold ME (1975) Experimental autoimmune myasthenia: a model of myasthenia gravis in rats and guinea pigs. J Exp Med 141:1365–1375

    Article  PubMed  CAS  Google Scholar 

  • Lennon VA, Seybold ME, Lindstrom JM et al (1978) Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J Exp Med 147:973–983

    Article  PubMed  CAS  Google Scholar 

  • Lennon VA, Lambert EH, Leiby KR et al (1991) Recombinant human acetylcholine receptor alpha-subunit induces chronic experimental autoimmune myasthenia gravis. J Immunol 146:2245–2248

    PubMed  CAS  Google Scholar 

  • Lin F, Kaminski HJ, Conti-Fine BM et al (2002) Markedly enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection. J Clin Invest 110:1269–1274

    PubMed  CAS  Google Scholar 

  • Lindstrom J (1980) Experimental autoimmune myasthenia gravis. J Neurol Neurosurg Psychiatry 43:568–576

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom J (2008) ‘Seronegative’ myasthenia gravis is no longer seronegative. Brain 131(Pt 7):1684–1685

    Article  PubMed  Google Scholar 

  • Lindstrom JM, Seybold ME, Lennon VA et al (1976) Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology 26:1054–1059

    PubMed  CAS  Google Scholar 

  • Link H, Xiao BG (2001) Rat models as tool to develop new immunotherapies. Immunol Rev 184:117–128

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Hao J, Dayao CS et al (2009) T-bet deficiency decreases susceptibility to experimental myasthenia gravis. Exp Neurol 220:366–373

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Zhou Q, La Cava A et al (2010) Expansion of regulatory T cells via IL-2/anti-IL-2 mAb complexes suppresses experimental myasthenia. Eur J Immunol 40:1577–1589

    Article  PubMed  CAS  Google Scholar 

  • Losen M, Stassen MH, Martinez–Martinez P et al (2005) Increased expression of rapsyn in muscles prevents acetylcholine receptor loss in experimental autoimmune myasthenia gravis. Brain 128(Pt 10):2327–2337

    Article  PubMed  Google Scholar 

  • Luo J, Taylor P, Losen M et al (2009) Main immunogenic region structure promotes binding of conformation-dependent myasthenia gravis autoantibodies, nicotinic acetylcholine receptor conformation maturation, and agonist sensitivity. J Neurosci 29:13898–13908

    Article  PubMed  CAS  Google Scholar 

  • Mantegazza R, Bonanno S, Camera G et al (2011) Current and emerging therapies for the treatment of myasthenia gravis. Neuropsychiatr Dis Treat 7:151–160

    Article  PubMed  CAS  Google Scholar 

  • Mareska M, Gutmann L (2004) Lambert-Eaton myasthenic syndrome. Semin Neurol 24:149–153

    Article  PubMed  Google Scholar 

  • Martinez–Martinez P, Losen M, Duimel H et al (2007) Overexpression of rapsyn in rat muscle increases acetylcholine receptor levels in chronic experimental autoimmune myasthenia gravis. Am J Pathol 170:644–657

    Article  PubMed  CAS  Google Scholar 

  • Martino G, DuPont BL, Wollmann RL et al (1993) The human-severe combined immunodeficiency myasthenic mouse model: a new approach for the study of myasthenia gravis. Ann Neurol 34:48–56

    Article  PubMed  CAS  Google Scholar 

  • Matsui N, Nakane S, Saito F et al (2010) Undiminished regulatory T cells in the thymus of patients with myasthenia gravis. Neurology 74:816–820

    Article  PubMed  CAS  Google Scholar 

  • Meinl E, Klinkert WE, Wekerle H (1991) The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the Lewis rat. Am J Pathol 139:995–1008

    PubMed  CAS  Google Scholar 

  • Melms A, Luther C, Stoeckle C et al (2006) Thymus and myasthenia gravis: antigen processing in the human thymus and the consequences for the generation of autoreactive T cells. Acta Neurol Scand Suppl 183:12–13

    Article  PubMed  CAS  Google Scholar 

  • Meriggioli MN, Sanders DB (2009) Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol 8:475–490

    Article  PubMed  CAS  Google Scholar 

  • Milani M, Ostlie N, Wu H et al (2006) CD4+ T and B cells cooperate in the immunoregulation of experimental autoimmune myasthenia gravis. J Neuroimmunol 179:152–162

    Article  PubMed  CAS  Google Scholar 

  • Moiola L, Galbiati F, Martino G et al (1998) IL-12 is involved in the induction of experimental autoimmune myasthenia gravis, an antibody-mediated disease. Eur J Immunol 28:2487–2497

    Article  PubMed  CAS  Google Scholar 

  • Morgan BP, Chamberlain-Banoub J, Neal JW et al (2006) The membrane attack pathway of complement drives pathology in passively induced experimental autoimmune myasthenia gravis in mice. Clin Exp Immunol 146:294–302

    Article  PubMed  CAS  Google Scholar 

  • Mu L, Sun B, Kong Q et al (2009) Disequilibrium of T helper type 1, 2 and 17 cells and regulatory T cells during the development of experimental autoimmune myasthenia gravis. Immunology 128(1 suppl):e826–e836

    Article  PubMed  Google Scholar 

  • Nessi V, Nava S, Ruocco C et al (2010) Naturally occurring CD4+ CD25+ regulatory T cells prevent but do not improve experimental myasthenia gravis. J Immunol 185:5656–5667

    Article  PubMed  CAS  Google Scholar 

  • Newsom-Davis J, Willcox N, Calder L (1981) Thymus cells in myasthenia gravis selectively enhance production of anti-acetylcholine-receptor antibody by autologous blood lymphocytes. N Engl J Med 305:1313–1318

    Article  PubMed  CAS  Google Scholar 

  • Ostlie N, Milani M, Wang W et al (2003) Absence of IL-4 facilitates the development of chronic autoimmune myasthenia gravis in C57BL/6 mice. J Immunol 170:604–612

    PubMed  CAS  Google Scholar 

  • Patrick J, Lindstrom J (1973) Autoimmune response to acetylcholine receptor. Science 180:871–872

    Article  PubMed  CAS  Google Scholar 

  • Penn AS, Low BW, Jaffe IA et al (1998) Drug-induced autoimmune myasthenia gravis. Ann NY Acad Sci 841:433–449

    Article  PubMed  CAS  Google Scholar 

  • Pestronk A, Drachman DB, Teoh R et al (1983) Combined short-term immunotherapy for experimental autoimmune myasthenia gravis. Ann Neurol 14:235–241

    Article  PubMed  CAS  Google Scholar 

  • Piddlesden SJ, Jiang S, Levin JL et al (1996) Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis. J Neuroimmunol 71:173–177

    Article  PubMed  CAS  Google Scholar 

  • Poussin MA, Goluszko E, David CS et al (2001) HLA-DQ6 transgenic mice resistance to experimental autoimmune myasthenia gravis is linked to reduced acetylcholine receptor-specific IFN-gamma, IL-2 and IL-10 production. J Autoimmun 17:175–180

    Article  PubMed  CAS  Google Scholar 

  • Qi H, Tuzun E, Allman W et al (2008) C5a is not involved in experimental autoimmune myasthenia gravis pathogenesis. J Neuroimmunol 196:101–106

    Article  PubMed  CAS  Google Scholar 

  • Rodgaard A, Nielsen FC, Djurup R et al (1987) Acetylcholine receptor antibody in myasthenia gravis: predominance of IgG subclasses 1 and 3. Clin Exp Immunol 67:82–88

    PubMed  CAS  Google Scholar 

  • Roncarolo MG, Levings MK, Traversari C (2001) Differentiation of T regulatory cells by immature dendritic cells. J Exp Med 193:F5–F9

    Article  PubMed  CAS  Google Scholar 

  • Ruff RL, Lennon VA (1998) End-plate voltage-gated sodium channels are lost in clinical and experimental myasthenia gravis. Ann Neurol 43:370–379

    Article  PubMed  CAS  Google Scholar 

  • Russel WMS, Burch RL (1959) The principles of humane experimental technique. Special edition published by Universities Federation for Animal Welfare (UFAW), 1992 edn. Methuen & Co., London

  • Sahashi K, Engel AG, Lambert EH et al (1980) Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. J Neuropathol Exp Neurol 39:160–172

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562

    Article  PubMed  CAS  Google Scholar 

  • Sanders DB, Evoli A (2010) Immunosuppressive therapies in myasthenia gravis. Autoimmunity 43:428–435

    Article  PubMed  CAS  Google Scholar 

  • Schönbeck S, Padberg F, Hohlfeld R et al (1992) Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis. J Clin Invest 90:245–250

    Article  PubMed  Google Scholar 

  • Sheng JR, Li L, Ganesh BB et al (2006) Suppression of experimental autoimmune myasthenia gravis by granulocyte-macrophage colony-stimulating factor is associated with an expansion of FoxP3+ regulatory T cells. J Immunol 177:5296–5306

    PubMed  CAS  Google Scholar 

  • Slater CR, Young C, Wood SJ et al (1997) Utrophin abundance is reduced at neuromuscular junctions of patients with both inherited and acquired acetylcholine receptor deficiencies. Brain 120(Pt 9):1513–1531

    Article  PubMed  Google Scholar 

  • Soltys J, Kusner LL, Young A et al (2009) Novel complement inhibitor limits severity of experimentally myasthenia gravis. Ann Neurol 65:67–75

    Article  PubMed  Google Scholar 

  • Tarrab-Hazdai R, Aharonov A, Silman I et al (1975) Experimental autoimmune myasthenia induced in monkeys by purified acetylcholine receptor. Nature 256:128–130

    Article  PubMed  CAS  Google Scholar 

  • Toro-Goyco E, Cora EM, Kessler MJ et al (1986) Induction of experimental myasthenia gravis in rhesus monkeys: a model for the study of the human disease. PR Health Sci J 5:13–18

    CAS  Google Scholar 

  • Toyka KV, Brachman DB, Pestronk A et al (1975) Myasthenia gravis: passive transfer from man to mouse. Science 190:397–399

    Article  PubMed  CAS  Google Scholar 

  • Tzartos S, Hochschwender S, Vasquez P et al (1987) Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor. J Neuroimmunol 15:185–194

    Article  PubMed  CAS  Google Scholar 

  • Tzartos SJ, Kokla A, Walgrave SL et al (1988) Localization of the main immunogenic region of human muscle acetylcholine receptor to residues 67–76 of the alpha subunit. Proc Natl Acad Sci USA 85:2899–2903

    Article  PubMed  CAS  Google Scholar 

  • Ubiali F, Nava S, Nessi V et al (2008) Pixantrone (BBR2778) reduces the severity of experimental autoimmune myasthenia gravis in Lewis rats. J Immunol 180:2696–2703

    PubMed  CAS  Google Scholar 

  • van der Neut Kolfschoten M, Schuurman J, Losen M et al (2007) Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317:1554–1557

    Article  PubMed  CAS  Google Scholar 

  • Vincent A (1991) Autoimmunity to acetylcholine receptors in myasthenia gravis. Biochem Soc Trans 19:180–183

    PubMed  CAS  Google Scholar 

  • Vincent A (1994) AChR from cell line TE671 cannot replace human muscle AChR in the conventional diagnostic immunoprecipitation RIA. J Neuroimmunol 53:115

    Article  PubMed  CAS  Google Scholar 

  • Vincent A (2002) Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol 2:797–804

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Karachunski PI, Howard JF et al (1999) Myasthenia in SCID mice grafted with myasthenic patient lymphocytes: role of CD4+ and CD8+ cells. Neurology 52:484–497

    PubMed  CAS  Google Scholar 

  • Wang W, Ostlie NS, Conti-Fine BM et al (2004) The susceptibility to experimental myasthenia gravis of STAT6−/− and STAT4−/− BALB/c mice suggests a pathogenic role of Th1 cells. J Immunol 172:97–103

    PubMed  CAS  Google Scholar 

  • Wood SJ, Slater CR (2001) Safety factor at the neuromuscular junction. Prog Neurobiol 64:393–429

    Article  PubMed  CAS  Google Scholar 

  • Xiao BG, Duan RS, Link H et al (2003) Induction of peripheral tolerance to experimental autoimmune myasthenia gravis by acetylcholine receptor-pulsed dendritic cells. Cell Immunol 223:63–69

    Article  PubMed  CAS  Google Scholar 

  • Xiao BG, Duan RS, Zhu WH et al (2006) The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis. Cell Immunol 241:95–101

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Goluszko E, David C et al (2002) Mapping myasthenia gravis-associated T cell epitopes on human acetylcholine receptors in HLA transgenic mice. J Clin Invest 109:1111–1120

    PubMed  CAS  Google Scholar 

  • Yang H, Zhang Y, Wu M et al (2010) Suppression of ongoing experimental autoimmune myasthenia gravis by transfer of RelB-silenced bone marrow dentritic cells is associated with a change from a T helper Th17/Th1 to a Th2 and FoxP3+ regulatory T-cell profile. Inflamm Res 59:197–205

    Article  PubMed  CAS  Google Scholar 

  • Yarilin D, Duan R, Huang YM et al (2002) Dendritic cells exposed in vitro to TGF-beta1 ameliorate experimental autoimmune myasthenia gravis. Clin Exp Immunol 127:214–219

    Article  PubMed  CAS  Google Scholar 

  • Zhang GX, Xiao BG, Bai XF et al (1999) Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis. J Immunol 162:3775–3781

    PubMed  CAS  Google Scholar 

  • Zhou Y, Gong B, Lin F et al (2007) Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis. J Immunol 179:8562–8567

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We regret that the essential work of many investigators and colleagues could not be included in this review due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulvio Baggi.

About this article

Cite this article

Baggi, F., Antozzi, C., Toscani, C. et al. Acetylcholine Receptor-Induced Experimental Myasthenia Gravis: What Have We Learned from Animal Models After Three Decades?. Arch. Immunol. Ther. Exp. 60, 19–30 (2012). https://doi.org/10.1007/s00005-011-0158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-011-0158-6

Keywords

Navigation