Skip to main content
Log in

Strategien für eine regenerative Therapie der Schwerhörigkeit

Strategies for a regenerative therapy of hearing loss. German version

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Trotz beeindruckender technischer Fortschritte auf dem Gebiet der konventionellen Hörgeräte und der implantierbaren Hörsysteme richten sich die Hoffnungen in der Behandlung von Innenohrerkrankungen wie Schwerhörigkeit und Tinnitus zunehmend auf regenerative Therapieansätze. In der vorliegenden Übersicht werden die gegenwärtig vielversprechendsten Strategien für die Regeneration von Haarzellen im Innenohr zur Therapie der Schwerhörigkeit wie stammzell- bzw. gentransferbasierte sowie pharmakologische Interventionen diskutiert und die bisherigen Meilensteine und wegweisenden Arbeiten auf diesem Forschungsgebiet identifiziert. Nach vielen Jahren der Grundlagenforschung sind nun kürzlich die ersten klinischen Studien mit regenerativem Therapieansatz für schwerhörige Patienten angelaufen. Auch wenn bis zu einem echten Durchbruch noch ein weiter und steiniger Weg zu gehen sein wird, scheint es realistischer denn je, dass regenerative Therapien für das Innenohr den Weg in die klinische Anwendung finden könnten.

Abstract

Despite impressive technical progress in the field of conventional hearing aids and implantable hearing systems, the hopes for the treatment of inner ear diseases such as hearing loss and tinnitus have become increasingly directed toward regenerative therapeutic approaches. This review discusses the currently most promising strategies for hair cell regeneration in the inner ear to treat hearing loss, including stem cell-based, gene transfer-based, and pharmacological interventions. Furthermore, previous milestones and ground-breaking work in this scientific field are identified. After many years of basic research, the first clinical trials with a regenerative therapeutic approach for hearing-impaired patients were recently initiated. Although there is still a long and bumpy road ahead until a true breakthrough is achieved, it seems more realistic than ever that regenerative therapies for the inner ear will find their way into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284:1837–1841

    Article  CAS  PubMed  Google Scholar 

  2. Brigande JV, Heller S (2009) Quo vadis, hair cell regeneration? Nat Neurosci 12:679–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brignull HR, Raible DW, Stone JS (2009) Feathers and fins: non-mammalian models for hair cell regeneration. Brain Res 1277:12–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen W, Cacciabue-Rivolta DI, Moore HD, Rivolta MN (2007) The human fetal cochlea can be a source for auditory progenitors/stem cells isolation. Hear Res 233:23–29

    Article  PubMed  Google Scholar 

  5. Chen W, Jongkamonwiwat N, Abbas L, Eshtan SJ, Johnson SL, Kuhn S, Milo M, Thurlow JK, Andrews PW, Marcotti W, Moore HD, Rivolta MN (2012) Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature 490:278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Corwin JT, Cotanche DA (1988) Regeneration of sensory hair cells after acoustic trauma. Science 240:1772–1774

    Article  CAS  PubMed  Google Scholar 

  7. Diensthuber M, Oshima K, Heller S (2009) Stem/progenitor cells derived from the cochlear sensory epithelium give rise to spheres with distinct morphologies and features. J Assoc Res Otolaryngol 10:173–190

    Article  PubMed  PubMed Central  Google Scholar 

  8. Diensthuber M, Zecha V, Wagenblast J, Arnhold S, Edge AS, Stöver T (2014) Spiral ganglion stem cells can be propagated and differentiated into neurons and glia. Biores Open Access 3:88–97

    Article  PubMed  PubMed Central  Google Scholar 

  9. Diensthuber M, Zecha V, Wagenblast J, Arnhold S, Stöver T (2014) Clonal colony formation from spiral ganglion stem cells. Neuroreport 25:1129–1135

    Article  PubMed  Google Scholar 

  10. Fukui H, Raphael Y (2013) Gene therapy for the inner ear. Hear Res 297:99–105

    Article  CAS  PubMed  Google Scholar 

  11. Gubbels SP, Woessner DW, Mitchell JC, Ricci AJ, Brigande JV (2008) Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 455:537–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. http://www.isrctn.com/ISRCTN59733689. Zugegriffen: 25. Juni 2017

  13. https://clinicaltrials.gov/ct2/show/study/NCT02132130. Zugegriffen: 13. Juni 2017

  14. Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF, Brough DE, Raphael Y (2005) Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 11:271–276

    Article  CAS  PubMed  Google Scholar 

  15. Jeon SJ, Oshima K, Heller S, Edge AS (2007) Bone marrow mesenchymal stem cells are progenitors in vitro for inner ear hair cells. Mol Cell Neurosci 34:59–68

    Article  CAS  PubMed  Google Scholar 

  16. Kawamoto K, Ishimoto S, Minoda R, Brough DE, Raphael Y (2003) Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 23:4395–4400

    CAS  PubMed  Google Scholar 

  17. Koehler KR, Hashino E (2014) 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat Protoc 9:1229–1244

    Article  CAS  PubMed  Google Scholar 

  18. Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E (2013) Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500:217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koehler KR, Nie J, Longworth-Mills E, Liu XP, Lee J, Holt JR, Hashino E (2017) Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells. Nat Biotechnol 35:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuo BR, Baldwin EM, Layman WS, Taketo MM, Zuo J (2015) In vivo cochlear hair cell generation and survival by coactivation of β‑catenin and Atoh1. J Neurosci 35:10786–10798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lenarz T (2017) Cochlear implant – state of the art. Laryngorhinootologie 96:S123–S151

    Article  PubMed  Google Scholar 

  22. Li H, Liu H, Heller S (2003) Pluripotent stem cells from the adult mouse inner ear. Nat Med 9:1293–1299

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Roblin G, Liu H, Heller S (2003) Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc Natl Acad Sci USA 100:13495–13500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li W, Wu J, Yang J, Sun S, Chai R, Chen ZY, Li H (2015) Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Proc Natl Acad Sci USA 112:166–171

    Article  CAS  PubMed  Google Scholar 

  25. Löwenheim H, Furness DN, Kil J, Zinn C, Gültig K, Fero ML, Frost D, Gummer AW, Roberts JM, Rubel EW, Hackney CM, Zenner HP (1999) Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of corti. Proc Natl Acad Sci USA 96:4084–4088

    Article  PubMed  PubMed Central  Google Scholar 

  26. Malgrange B, Belachew S, Thiry M, Nguyen L, Rogister B, Alvarez ML, Rigo JM, Van De Water TR, Moonen G, Lefebvre PP (2002) Proliferative generation of mammalian auditory hair cells in culture. Mech Dev 112:79–88

    Article  CAS  PubMed  Google Scholar 

  27. Martinez-Monedero R, Oshima K, Heller S, Edge AS (2007) The potential role of endogenous stem cells in regeneration of the inner ear. Hear Res 227:48–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McLean WJ, Yin X, Lu L, Lenz DR, McLean D, Langer R, Karp JM, Edge AS (2017) Clonal expansion of Lgr5-positive cells from mammalian cochlea and high-purity generation of sensory hair cells. Cell Rep 18:1917–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mizutari K, Fujioka M, Hosoya M, Bramhall N, Okano HJ, Okano H, Edge AS (2013) Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron 77:58–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Niemiec AJ, Raphael Y, Moody DB (1994) Return of auditory function following structural regeneration after acoustic trauma: behavioral measures from quail. Hear Res 79:1–16

    Article  CAS  PubMed  Google Scholar 

  31. Oshima K, Grimm CM, Corrales CE, Senn P, Martinez Monedero R, Geleoc GS, Edge A, Holt JR, Heller S (2007) Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. J Assoc Res Otolaryngol 8:18–31

    Article  PubMed  Google Scholar 

  32. Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller S (2010) Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell 141:704–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rask-Andersen H, Boström M, Gerdin B, Kinnefors A, Nyberg G, Engstrand T, Miller JM, Lindholm D (2005) Regeneration of human auditory nerve. In vitro/in video demonstration of neural progenitor cells in adult human and guinea pig spiral ganglion. Hear Res 203:180–191

    Article  CAS  PubMed  Google Scholar 

  34. Rask-Andersen H, Li H, Löwenheim H, Müller M, Pfaller K, Schrott-Fischer A, Glueckert R (2017) Supernumerary human hair cells-signs of regeneration or impaired development? A field emission scanning electron microscopy study. Ups J Med Sci 122:11–19

    Article  PubMed  PubMed Central  Google Scholar 

  35. Richardson RT, Atkinson PJ (2015) Atoh1 gene therapy in the cochlea for hair cell regeneration. Expert Opin Biol Ther 15:417–430

    Article  CAS  PubMed  Google Scholar 

  36. Roemer A, Köhl U, Majdani O, Klöß S, Falk C, Haumann S, Lenarz T, Kral A, Warnecke A (2016) Biohybrid cochlear implants in human neurosensory restoration. Stem Cell Res Ther 7:148

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ronaghi M, Nasr M, Ealy M, Durruthy-Durruthy R, Waldhaus J, Diaz GH, Joubert LM, Oshima K, Heller S (2014) Inner ear hair cell-like cells from human embryonic stem cells. Stem Cells Dev 23:1275–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ryals BM, Rubel EW (1988) Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science 240:1774–1776

    Article  CAS  PubMed  Google Scholar 

  39. Sage C, Huang M, Karimi K, Gutierrez G, Vollrath MA, Zhang DS, Garcia-Anoveros J, Hinds PW, Corwin JT, Corey DP, Chen ZY (2005) Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science 307:1114–1118

    Article  CAS  PubMed  Google Scholar 

  40. Schleich CL (1921) Die Weisheit der Freude. Ernst Rowohlt Verlag, Berlin, S 45 (7.–11. Aufl)

    Google Scholar 

  41. Shi F, Hu L, Edge AS (2013) Generation of hair cells in neonatal mice by β‑catenin overexpression in Lgr5-positive cochlear progenitors. Proc Natl Acad Sci USA 110:13851–13856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shi F, Hu L, Jacques BE, Mulvaney JF, Dabdoub A, Edge AS (2014) β‑Catenin is required for hair-cell differentiation in the cochlea. J Neurosci 34:6470–6479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  44. Volkenstein S, Oshima K, Sinkkonen ST, Corrales CE, Most SP, Chai R, Jan TA, van Amerongen R, Cheng AG, Heller S (2013) Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus. Proc Natl Acad Sci USA 110:14456–14461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang SM, Chen W, Guo WW, Jia S, Sun JH, Liu HZ, Young WY, He DZ (2012) Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea. PLoS ONE 7:e46355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Danksagung

Die Autoren danken Prof. Stefan Heller, Stanford University School of Medicine (U.S.A.), für kritische Kommentare und Diskussionen und Dr. Julia Fraedrich für die Unterstützung bei der graphischen Gestaltung der Illustrationen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Diensthuber.

Ethics declarations

Interessenkonflikt

M. Diensthuber und T. Stöver geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diensthuber, M., Stöver, T. Strategien für eine regenerative Therapie der Schwerhörigkeit. HNO 66, 179–187 (2018). https://doi.org/10.1007/s00106-017-0466-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-017-0466-1

Schlüsselwörter

Keywords

Navigation