Skip to main content
Log in

Characterisation of barley resistance to rhynchosporium on chromosome 6HS

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Major resistance gene to rhynchosporium, Rrs18, maps close to the telomere on the short arm of chromosome 6H in barley.

Abstract

Rhynchosporium or barley scald caused by a fungal pathogen Rhynchosporium commune is one of the most destructive and economically important diseases of barley in the world. Testing of Steptoe × Morex and CIho 3515 × Alexis doubled haploid populations has revealed a large effect QTL for resistance to R. commune close to the telomere on the short arm of chromosome 6H, present in both populations. Mapping markers flanking the QTL from both populations onto the 2017 Morex genome assembly revealed a rhynchosporium resistance locus independent of Rrs13 that we named Rrs18. The causal gene was fine mapped to an interval of 660 Kb using Steptoe × Morex backcross 1 S2 and S3 lines with molecular markers developed from Steptoe exome capture variant calling. Sequencing RNA from CIho 3515 and Alexis revealed that only 4 genes within the Rrs18 interval were transcribed in leaf tissue with a serine/threonine protein kinase being the most likely candidate for Rrs18.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott DC, Burdon JJ, Jarosz AM, Brown AHD, Muller WJ, Read BJ (1991) The relationship between seedling infection types and field reactions in Clipper barley backcross lines. Aust J Agric Res 42:801–809

    Article  Google Scholar 

  • Abbott DC, Lagudah ES, Brown AHD (1995) Identification of RFLPs flanking a scald resistance gene on barley chromosome 6. J Hered 86:152–154

    Article  CAS  PubMed  Google Scholar 

  • Abramoff MD, Magalhães PJ, Ram SJ (2004) Image Processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  • Avrova A, Knogge W (2012) Rhynchosporium commune: a persistent threat to barley cultivation. Mol Plant Pathol 13:986–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Bayer MM, Rapazote-Flores P, Ganal M, Hedley PE, Macaulay M, Plieske J, Ramsay L, Russell J, Shaw PD, Thomas W, Waugh R (2017) Development and evaluation of a Barley 50 k iSelect SNP array. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01792

    Article  PubMed  PubMed Central  Google Scholar 

  • Behn A, Hartl L, Schweizer G, Wenzel G, Baumer M (2004) QTL mapping for resistance against non-parasitic leaf spots in a spring barley doubled haploid population. Theor Appl Genet 108:1229–1235

    Article  CAS  PubMed  Google Scholar 

  • Bjørnstad A, Patil V, Tekauz A, Maroy AG, Skinnes H, Jensen A, Magnus H, MacKey J (2002) Resistance to scald (Rhynchosporium secalis) in barley (Hordeum vulgare) studied by near-isogenic lines: I. Markers differential isolates. Phytopathology 92:710–720

    Article  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics (Oxford, England) 19:889–890

    Article  CAS  Google Scholar 

  • Cheong J, Williams K, Wallwork H (2006) The identification of QTLs for adult plant resistance to leaf scald in barley. Aust J Agric Res 57:961–965

    Article  CAS  Google Scholar 

  • Cingolani P, Platts A, Wang LL, Coon M, Tung N, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 6:80–92. https://doi.org/10.4161/fly.19695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J, Wanamaker S, Bozdag S, Roose M, Moscou M, Chao S, Varshney R, Szucs P, Sato K, Hayes P, Matthews D, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton R, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:582–594

    Article  CAS  Google Scholar 

  • Dahleen LS (2006) Coordinator’s report: chromosome 7H. Barley Genet Newslett 36:63–65

    Google Scholar 

  • Davis H, Fitt BD (1990) Symptomless infection of Rhynchosporium secalis on leaves of winter barley. Mycol Res 94:557–560

    Article  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  • Druka A, Druka I, Centeno AG, Li H, Sun Z, Thomas WTB, Bonar N, Steffenson BJ, Ullrich SE, Kleinhofs A, Wise RP, Close TJ, Potokina E, Luo Z, Wagner C, Schweizer GF, Marshall DF, Kearsey MJ, Williams RW, Waugh R (2008) Towards systems genetic analyses in barley: integration of phenotypic, expression and genotype data into GeneNetwork. BMC Genet 9:73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genger RK, Brown AHD, Knogge W, Nesbitt K, Burdon JJ (2003) Development of SCAR markers linked to a scald resistance gene derived from wild barley. Euphytica 134:149–159

    Article  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Ann Rev Phytopathol 43:205–227

    Article  CAS  Google Scholar 

  • Grønnerød S, Marøy AG, MacKey J, Tekauz A, Penner GA, Bjørnstad A (2002) Genetic analysis of resistance to barley scald (Rhynchosporium secalis) in the Ethiopian line ‘Abyssinian’ (CI668). Euphytica. 126:235–250

    Article  Google Scholar 

  • Habgood MR, Hayes JD (1971) The inheritance of resistance to Rhynchosporium secalis in barley. Heredity 27:25–37

    Article  Google Scholar 

  • Hanemann A, Schweizer GF, Cossu R, Wicker T, Röder MS (2009) Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley. Theor Appl Genet 119:1507–1522

    Article  CAS  PubMed  Google Scholar 

  • Hofmann K, Silvar C, Casas AM, Herz M, Büttner B, Gracia MP, Contreras-Moreira B, Wallwork H, Igartua E, Schweizer G (2013) Fine mapping of the Rrs1 resistance locus against scald in two large populations derived from Spanish barley landraces. Theor Appl Genet 126:3091–3102

    Article  CAS  PubMed  Google Scholar 

  • IBSC International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Article  CAS  Google Scholar 

  • Jackson LF, Webster RK (1976) Race differentiation, distribution, and frequency of Rhynchosporium secalis in California. Phytopathology 66:719–725

    Article  Google Scholar 

  • Jenkins JEE, Jemmett JL (1967) Barley leaf blotch. NAAS Q Rev 75:127–132

    Google Scholar 

  • Jensen J, Backes G, Skinnes H, Giese H (2002) Quantitative trait loci for scald resistance in barley localized by a non-interval mapping procedure. Plant Breed 121:124–128

    Article  CAS  Google Scholar 

  • Jones P, Ayres PG (1974) Rhynchosporium leaf blotch of barley studied during the subcuticular phase by electron microscopy. Physiol Plant Pathol 4:229–233

    Article  Google Scholar 

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82:1–26

    Article  Google Scholar 

  • Larkan NJ, Lydiate DJ, Parkin IAP, Nelson MN, Epp DJ, Cowling WA, Rimmer SR, Borhan MH (2013) The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytol 197:595–605

    Article  CAS  PubMed  Google Scholar 

  • Lehnackers H, Knogge W (1990) Cytological studies on the infection of barley cultivars with known resistance genotypes by Rhynchosporium secalis. Can J Bot 68:1953–1961

    Article  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Ji L (2005) Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 95:221–227

    Article  CAS  PubMed  Google Scholar 

  • Li JZ, Sjakste TG, Röder MS, Ganal MW (2003) Development and genetic mapping of 127 new microsatellite markers in barley. Theor Appl Genet 107:1021–1927

    Article  CAS  PubMed  Google Scholar 

  • Liebrand TWH, van den Berg GCM, Zhang Z, Smit P, Cordewener JHG, America AHP, Sklenar J, Jones AME, Tameling WIL, Robatzek S, Thomma BPHJ, Joosten MHAJ (2013) Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc Natl Acad Sci USA 110:10010–10015

    Article  PubMed  PubMed Central  Google Scholar 

  • Looseley ME, Griffe LL, Büttner B, Wright KM, Middlefell-Williams J, Bull H, Shaw PD, Macaulay M, Booth A, Schweizer G, Russell JR, Waugh R, Thomas WTB, Avrova A (2018) Resistance to Rhynchosporium commune in a collection of European spring barley germplasm. Theor Appl Genet 55:55. https://doi.org/10.1007/s00122-018-3168-5

    Article  CAS  Google Scholar 

  • Marzin S, Hanemann A, Sharma S, Hensel G, Kumlehn J, Schweizer G, Röder MS (2016) Are PECTIN ESTERASE INHIBITOR genes involved in mediating resistance to Rhynchosporium commune in barley? PLoS ONE 11:e0150485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mascher M, Richmond TA, Stein N (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76:494–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X-Q, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–443

    Article  CAS  PubMed  Google Scholar 

  • Maucher H, Hause B, Feussner I, Ziegler J, Wasternack C (2000) Allene oxide synthases of barley (Hordeum vulgare cv. Salome): tissue specific regulation in seedling development. Plant J 21:199–213

    Article  CAS  PubMed  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Doležel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, Depristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D (2010a) Tablet—next generation sequence assembly visualization. Bioinformatics 26:401–402

    Article  CAS  PubMed  Google Scholar 

  • Milne I, Shaw P, Marshall D (2010b) Flapjack—graphical genotype visualization. Bioinformatics 26:3133–3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, Shaw PD, Marshall D (2013) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14:193–202

    Article  CAS  PubMed  Google Scholar 

  • Molendijk AJ, Ruperti B, Singh MK, Dovzhenko A, Ditengou FA, Milia M, Westphal L, Rosahl S, Soellick T-R, Uhrig J, Weingarten L, Huber M, Palme K (2008) A cysteine-rich receptor-like kinase NCRK and a pathogeninduced protein kinase RBK1 are Rop GTPase interactors. Plant J 53:909–923

    Article  CAS  PubMed  Google Scholar 

  • Newton AC (1989) Somatic recombination in Rhynchosporium secalis. Plant Pathol 38:71–74

    Article  Google Scholar 

  • Newton AC, Searle J, Guy DC, Hackett CA, Cooke DEL (2001) Variability in pathotype, aggressiveness, RAPD profile, and rDNA ITS1 sequences of UK isolates of Rhynchosporium secalis. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz-J Plant Dis Prot 108:446–458

    CAS  Google Scholar 

  • Oxley SJP, Cooke LR, Black L, Hunter A, Mercer PC (2003) Management of Rhynchosporium in different barley varieties and cropping systems. Home-Grown Cereals Authority, Project Report 315, London

  • Patil V, Bjørnstad Å, Mackey J (2003) Molecular mapping of a new gene Rrs4 CI 11549 for resistance to barley scald (Rhynchosporium secalis). Mol Breed 12:169–183

    Article  CAS  Google Scholar 

  • Penner GA, Tekauz A, Reimer E, Scoles GJ, Rossnagel BG, Eckstein PE, Legge WG, Burnett PA, Ferguson T, Helm JF (1995) The genetic basis of scald resistance in western Canadian barley cultivars. Euphytica 92:367–374

    Article  Google Scholar 

  • Phillips D, Jenkins G, Ramsay L (2015) The effect of temperature on the male and female recombination landscape of barley. New Phytol 208:241–249

    Article  CAS  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Ramsay L, Macaulay M, Ivanissevich SD, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro A, Golicz A, Hackett CA, Milne I, Stephen G, Marshall D, Flavell AJ, Bayer M (2015) An investigation of causes of false positive single nucleotide polymorphisms using simulated reads from a small eukaryote genome. BMC Bioinform 16:382–397

    Article  Google Scholar 

  • Rohe M, Searle J, Newton AC, Knogge W (1996) Transformation of the plant pathogenic fungus, Rhynchosporium secalis. Curr Genet 29:587–590

    Article  CAS  PubMed  Google Scholar 

  • Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527

    Article  CAS  PubMed  Google Scholar 

  • Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S, Hofstad A, Sharma R, Himmelbach A, Knauft M, Van Zonneveld M, Brown JWS, Schmid K, Kilian B, Muehlbauer GJ, Stein N, Waugh R (2016) Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet 48:1024–1030. https://doi.org/10.1038/ng.3612

    Article  CAS  PubMed  Google Scholar 

  • Saintenac C, Lee WS, Cambon F, Rudd JJ, King RC, Marande W, Powers SJ, Bergès H, Phillips AL, Uauy C, Hammond-Kosack KE, Langin T, Kanyuka K (2018) Wheat receptor kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat Genet. https://doi.org/10.1038/s41588-018-0051-x

    Article  PubMed  Google Scholar 

  • Schweizer GF, Baumer M, Daniel G, Rugel H, Röder MS (1995) RFLP markers linked to scald (Rhynchosporium secalis) resistance gene Rh2 in barley. Theor Appl Genet 90:920–924

    Article  CAS  PubMed  Google Scholar 

  • Shipton WA, Boyd WJR, Ali SM (1974) Scald of barley. Rev Plant Pathol 53:839–861

    Google Scholar 

  • Shtaya MJY, Marcel TC, Sillero JC, Niks RE, Rubiales D (2006) Identification of QTLs for powdery mildew and scald resistance in barley. Euphytica 151:421–429

    Article  Google Scholar 

  • Silvar C, Casas AM, Igartua E, Ponce-Molina LJ, Gracia MP, Schweizer G, Herz M, Flath K, Waugh R, Kopahnke D, Ordon F (2011) Resistance to powdery mildew in Spanish barley landraces is controlled by different sets of quantitative trait loci. Theor Appl Genet 123:1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Starling TM, Roane CW, Chi KR (1971) Inheritance of reaction to Rhynchosporium secalis in winter barley cultivars. In: Proceedings of 2nd international barley genetics symposium, Pullman, WA, pp 513–519

  • Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839

    Article  CAS  PubMed  Google Scholar 

  • Stotz H, Mitrousia G, de Wit P, Fitt BDL (2014) Effector-triggered defence against apoplastic fungal pathogens. Trends Plant Sci 19:491–500. https://doi.org/10.1016/j.tplants.2014.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32:e5

    Article  PubMed  PubMed Central  Google Scholar 

  • Thirugnanasambandam A, Wright KM, Atkins SD, Whisson SC, Newton AC (2011) Infection of Rrs1 barley by an incompatible race of the fungus Rhynchosporium secalis expressing the green fluorescent protein. Plant Pathol 60:513–521

    Article  Google Scholar 

  • Van Der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, Depristo MA (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protocols Bioinform 43:11–33

    Google Scholar 

  • Varshney RK, Mahendar T, Aggarwal RK, Börner A (2007) Genic molecular markers in plants: development and applications. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement. Springer, Dordrecht

    Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Interact 14:508–515

    Article  CAS  PubMed  Google Scholar 

  • VSN International (2014) GenStat for Windows, 17th edn. VSN International, Hemel Hempstead, UK

    Google Scholar 

  • Wagner C, Schweizer G, Krämer M, Dehmer-Badani AG, Ordon F, Friedt W (2008) The complex quantitative barley-Rhynchosporium secalis interaction: newly identified QTL may represent already known resistance genes. Theor Appl Genet 118:113–122

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Gupta S, Wallwork H, Zhang X-Q, Zhou G, Broughton S, Loughman R, Lance R, Wu D, Shu X, Li C (2014) Combination of seedling and adult plant resistance to leaf scald for stable resistance in barley. Mol Breed 34:2081–2089

    Article  CAS  Google Scholar 

  • Xi K, Burnett PA, Tewari JP, Chen MH, Turkington TK, Helm JH (2000) Histopathological study of barley cultivars resistant and susceptible to Rhynchosporium secalis. Phytopathology 90:94–102

    Article  Google Scholar 

  • Xu M, Korban SS (2002) A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics 162:1995–2006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan J, Fitt BDL, Pinnschmidt HO, Oxley SJP, Newton AC (2008) Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley. Plant Pathol 57:1–14

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Scottish Food Security Alliance (SFSA) and the Bavarian State Ministry of Food, Agriculture and Forestry. MB, LR, RW, MEL and AA were supported by the Scottish Government Rural and Environment Science and Analytical Services (RESAS). AA and MB were also funded by the BBSRC-CIRC Project BB/J019569/1. KH was supported by the Federal Office of Agriculture and Food (BLE) under Grant No 28-1-41.009-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Avrova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Kevin Smith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 583 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulter, M., Büttner, B., Hofmann, K. et al. Characterisation of barley resistance to rhynchosporium on chromosome 6HS. Theor Appl Genet 132, 1089–1107 (2019). https://doi.org/10.1007/s00122-018-3262-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3262-8

Navigation