Skip to main content
Log in

Automatic selection for general surrogate models

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In design engineering problems, the use of surrogate models (also called metamodels) instead of expensive simulations have become very popular. Surrogate models include individual models (regression, kriging, neural network...) or a combination of individual models often called aggregation or ensemble. Since different surrogate types with various tunings are available, users often struggle to choose the most suitable one for a given problem. Thus, there is a great interest in automatic selection algorithms. In this paper, we introduce a universal criterion that can be applied to any type of surrogate models. It is composed of three complementary components measuring the quality of general surrogate models: internal accuracy (on design points), predictive performance (cross-validation) and a roughness penalty. Based on this criterion, we propose two automatic selection algorithms. The first selection scheme finds the optimal ensemble of a set of given surrogate models. The second selection scheme further explores the space of surrogate models by using an evolutionary algorithm where each individual is a surrogate model. Finally, the performances of the algorithms are illustrated on 15 classical test functions and compared to different individual surrogate models. The results show the efficiency of our approach. In particular, we observe that the three components of the proposed criterion act all together to improve accuracy and limit over-fitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Acar E, Rais-Rohani M (2009) Ensemble of metamodels with optimized weight factors. Struct Multidiscip Optim 37(3):279–294

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  MathSciNet  MATH  Google Scholar 

  • Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Statist Surv 4:40–79

    Article  MathSciNet  MATH  Google Scholar 

  • Chen PW, Wang JY, Lee HM (2004) Model selection of svms using ga approach. In: 2004 IEEE international joint conference on neural networks, 2004. Proceedings, vol 3. IEEE, pp 2035–2040

  • Duchon J (1977) Splines minimizing rotation-invariant semi-norms in sobolev spaces. In: Constructive theory of functions of several variables. Springer, pp 85–100

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Forrester AI, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45 (1):50–79

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19(1):1–67

    Article  MathSciNet  MATH  Google Scholar 

  • Gramacy R B, Lee H K (2008) Gaussian processes and limiting linear models. Comput Statist Data Anal 53(1):123–136

    Article  MathSciNet  MATH  Google Scholar 

  • Gramacy R B, Lee H K (2009) Adaptive design and analysis of supercomputer experiments. Technometrics, 51(2)

  • Gramacy R B, Lee H K (2012) Cases for the nugget in modeling computer experiments. Statist Comput 22(3):713–722

    Article  MathSciNet  MATH  Google Scholar 

  • Goel T, Haftka RT, Shyy W, Queipo NV (2007) Ensemble of surrogates. Struct Multidiscip Optim 33(3):199–216

    Article  Google Scholar 

  • Gorissen D, Dhaene T, Turck FD (2009) Evolutionary model type selection for global surrogate modeling. J Mach Learn Res 10:2039–2078

    MathSciNet  MATH  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning, vol 2. Springer, Berlin

    Book  MATH  Google Scholar 

  • James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 6. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on artificial intelligence. IJCAI’95, vol 2. Morgan Kaufmann Publishers Inc, pp 1137–1143

  • Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37 (155):141–158

    Article  MathSciNet  MATH  Google Scholar 

  • Lessmann S, Stahlbock R, Crone SF (2006) Genetic algorithms for support vector machine model selection. In: The 2006 IEEE international joint conference on neural network proceedings. IEEE, pp 3063–3069

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266

    Article  Google Scholar 

  • McKay MD, Beckman RJ, Conover WJ (1979) Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245

    MathSciNet  MATH  Google Scholar 

  • Müller J, Piché R (2011) Mixture surrogate models based on dempster-shafer theory for global optimization problems. J Glob Optim 51(1):79–104

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen H, Couckuyt I, Knockaert L, Dhaene T, Gorissen D, Saeys Y (2011) An alternative approach to avoid overfitting for surrogate models. In: Proceedings of the 2011 winter simulation conference (WSC), pp 2760–2771

  • Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Tucker PK (2005) Surrogate-based analysis and optimization. Prog Aerosp Sci 41(1):1–28

    Article  Google Scholar 

  • Schwarz G et al. (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Shi L, Yang R, Zhu P (2012) A method for selecting surrogate models in crashworthiness optimization. Struct Multidiscip Optim 46(2):159–170

    Article  Google Scholar 

  • Smola A, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222

    Article  MathSciNet  Google Scholar 

  • Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc Ser B Methodol 36(2):111–147

    MathSciNet  MATH  Google Scholar 

  • Tomioka S, Nisiyama S, Enoto T (2007) Nonlinear least square regression by adaptive domain method with multiple genetic algorithms. IEEE Trans Evol Comput 11(1):1–16

    Article  Google Scholar 

  • Viana FA, Haftka RT, Steffen V (2009) Multiple surrogates: how cross-validation errors can help us to obtain the best predictor. Struct Multidiscip Optim 39(4):439–457

    Article  Google Scholar 

  • Viana FA, Venter G, Balabanov V (2010) An algorithm for fast optimal latin hypercube design of experiments. Int J Numer Methods Eng 82(2):135–156

    MathSciNet  MATH  Google Scholar 

  • Watson DF (1981) Computing the n-dimensional delaunay tessellation with application to voronoi polytopes. Comput J 24(2):167–172

    Article  MathSciNet  Google Scholar 

  • Zerpa LE, Queipo NV, Pintos S, Salager JL (2005) An optimization methodology of alkaline–surfactant–polymer flooding processes using field scale numerical simulation and multiple surrogates. J Pet Sci Eng 47(3):197–208

    Article  Google Scholar 

  • Zhang C, Shao H, Li Y (2000) Particle swarm optimisation for evolving artificial neural network. In: 2000 IEEE international conference on systems, man, and cybernetics, vol 4. IEEE, pp 2487–2490

  • Zhou X, Jiang T (2016) Metamodel selection based on stepwise regression. Struct Multidiscip Optim 54 (3):641–657

    Article  MathSciNet  Google Scholar 

  • Zhou XJ, Ma YZ, Li XF (2011) Ensemble of surrogates with recursive arithmetic average. Struct Multidiscip Optim 44(5):651–671

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank Olivier Roustant and Fabrice Gamboa for the help in writing this paper and for their valuable remarks. We also warmly thank two anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malek Ben Salem.

Additional information

Malek BEN SALEM is funded by a CIFRE grant from the ANSYS company, subsidized by the French National Association for Research and Technology (ANRT, CIFRE grant number 2014/1349).

Appendices

Appendix A: Comparison between the proposed PPS parameters and the optimal according to the sum of RMSE

Fig. 24
figure 24

The scaled RMSE for each PPS-optimal ensemble, For each function: Left: using (α,β,γ) = (1,β,γ) in light green. Right: using (α,β,γ) = (1,0.5,0.25) in light blue. The function number is as in Table 1

Appendix B: Test functions

The equations and the input parameter space of the functions of Table 1 are defined below:

  1. 1/

    Wing weight function:

    Parameters: Sw ∈ [150, 200], Wfw ∈ [220, 300], A ∈ [6, 10],

    γ ∈ [− 10, 10], q ∈ [16, 45], λ ∈ [0.5, 1], tc ∈ [0.08, 0.18],

    Nz ∈ [2.5, 6], Wdg ∈ [1700, 2500], Wp ∈ [0.025, 0.08]

    $$\begin{array}{@{}rcl@{}} \text{For } \mathbf{x} &=& (S_{w},W_{fw} A, \gamma, q, \lambda, t_{c}, N_{z}, W_{dg},W_{p} )\\ f_{1}(\mathbf{x}) &=& 0.036 S_{w}^{0.758} W_{fw}^{0.758} \left( \frac{A}{\cos^{2}(\gamma)} \right)^{0.6} q^{0.006} \lambda^{0.04}\\ && \left( \frac{100 t_{c}}{\cos(\gamma)}\right)^{-0.3} (N_{z} W_{dg})^{0.49}+ S_{w} W_{p} \end{array} $$
    (17)
  2. 2/

    Borehole function:

    Parameters: rw ∈ [0.05, 0.15], r ∈ [100, 50000],

    Tu ∈ [63070, 115600], Hu ∈ [990, 1110], Tl ∈ [63.1, 116],

    Hl ∈ [700, 820], L ∈ [1120, 1680], Kw ∈ [9855, 12045]

    $$\begin{array}{@{}rcl@{}} \text{For } \mathbf{x} &=& (r_{w},r,T_{u},H_{u},T_{l},H_{l},L,K_{w})\\ f_{2}(\mathbf{x}) &=& \frac{2\pi T_{u}(H_{u} - H_{l})}{\ln\left( \frac{r}{r_{w}}\right) \left( 1 + \frac{2L T_{u}}{ln\left( \frac{r}{r_{w}}\right) {r^{2}_{w}} K_{w}} + \frac{T_{u}}{T_{l}}\right)} \end{array} $$
    (18)
  3. 3/

    Dette and Pepelyshev 8-Dim

    Parameters: for all i = 1,…, 8 , xi ∈ [0, 1]

    $$\begin{array}{@{}rcl@{}} f_{3}(\mathbf{x}) &=& 4(x_{1} - 2 + 8x_{2} - 8{x_{2}^{2}})^{2} + (3-4x_{2})^{2}\\ && + 16 \sqrt{x_{3} + 1} (2x_{3} -1)^{2} + \sum\limits_{i = 4}^{8} i \ln\left( 1 + \sum\limits_{j = 3}^{i} x_{j}\right)\\ \end{array} $$
    (19)
  4. 4/

    Piston simulation function:

    Parameters: M ∈ [30, 60], S ∈ [0.005, 0.020],

    V0 ∈ [0.002, 0.010], k ∈ [1, 5] × 103, P0 ∈ [9, 11] × 104,

    Ta ∈ [290, 296], T0 ∈ [340, 360]

    $$\begin{array}{@{}rcl@{}} f_{4}(\mathbf{x}) &=& 2 \pi \sqrt{\frac{M}{k+S^{2} \frac{P_{0} V_{0}}{T_{0}} \frac{T_{a}}{V^{2}}}}\\ \text{where } V &=& \frac{S}{2k} \left( \sqrt{A^{2} + 4 k \frac{P_{0} V_{0}}{T_{0}} T_{a}} - A \right)\\ \text{and } A &=& P_{0} S + 19.62 M - \frac{k V_{0}}{S} \end{array} $$
    (20)
  5. 5/

    OTL circuit function:

    Parameters: Rb1 ∈ [50, 150], Rb2 ∈ [25, 70],

    Rf ∈ [0.5, 3], Rc1 ∈ [1.2, 2.5], Rc1 ∈ [0.25, 1.2],

    β ∈ [50, 300]

    $$\begin{array}{@{}rcl@{}} f_{5}(\mathbf{R},\beta) &=& \frac{\left( \frac{12 R_{b2}}{R_{b1} + R_{b2}} + 0.74\right) \beta (R_{c2} + 9)}{\beta(R_{c2} + 9) + R_{f}}\\ && + \frac{11.35 R_{f}}{\beta(R_{c2} + 9) + R_{f}}\\ && + \frac{0.75 R_{f} \beta (R_{c2} + 9)}{ (\beta(R_{c2} + 9) + R_{f}) R_{c1}} \end{array} $$
    (21)
  6. 6/

    Gramacy and Lee (2009) function:

    Parameters: for all i = 1,…, 6 , xi ∈ [0, 1]

    $$ f_{6}(\mathbf{x}) = \exp[\sin((0.9(x_{1} + 0.48))^{10})] + x_{2}x_{3} +x_{4} $$
    (22)
  7. 7/

    Friedman function:

    Parameters: for all i = 1,…, 5 , xi ∈ [0, 1]

    $$ f_{7}(\mathbf{x}) = 10 \sin(\pi x_{1} x_{2}) + 20(x_{3} - 0.5)^{2} + 10 x_{4} + 5x_{5} $$
    (23)
  8. 8/

    Dette & Pepelyshev exponential function:

    Parameters: for all i = 1,…, 3 , xi ∈ [0, 1]

    $$ f_{8}(\mathbf{x}) = 100(e^{-2/x^{1.75}_{1}} + e^{-2/x^{1.5}_{2}} + e^{-2/x^{1.25}_{3}}) $$
    (24)
  9. 9/

    Dette & Pepelyshev curved function:

    Parameters: for all i = 1,…, 3 , xi ∈ [0, 1]

    $$\begin{array}{@{}rcl@{}} f_{9}(\mathbf{x}) &=& 4(x_{1} -2 + 8x_{2} - 8{x^{2}_{2}})^{2} + (3-4x_{2})^{2}\\ && + 16 \sqrt{x_{3} + 1} (2 x_{3} -1)^{2} \end{array} $$
    (25)
  10. 10/

    Lim non-polynomial function:

    Parameters: x1,x2 ∈ [0, 1]

    $$ f_{10}(\mathbf{x}) = \frac{1}{6}[(30 + 5x_{1} \sin(5x_{1})) (4 + \exp(-5x_{2}))-100] $$
    (26)
  11. 11/

    Currin exponential function:

    Parameters: x1,x2 ∈ [0, 1]

    $$\begin{array}{@{}rcl@{}} f_{11}(\mathbf{x}) &=& \left[1 - \exp\left( - \frac{1}{2x_{2}}\right)\right]\\ && \times \frac{2300{x_{1}^{3}} + 1900{x_{1}^{2}} + 2092x_{1}+ 60}{100{x_{1}^{3}} + 500{x_{1}^{2}} + 4x_{1} + 20} \end{array} $$
    (27)
  12. 12/

    Franke function:

    Parameters: x1,x2 ∈ [0, 1]

    $$\begin{array}{@{}rcl@{}} f_{12}(\mathbf{x}) &=& 0.75 \exp\left( - \frac{(9x_{1} - 2)^{2} +(9x_{2} - 2)^{2}}{4}\right)\\ && + 0.75 \exp\left( - \frac{(9x_{1} + 2)^{2}}{49} - \frac{9x_{2} + 1}{10}\right)\\ && + 0.5 \exp\left( - \frac{(9x_{1} - 7)^{2}}{4} - \frac{(9x_{2} - 3)^{2}}{4}\right)\\ && + 0.2 \exp(- (9x_{1} - 4)^{2} - (9x_{2} - 7)^{2} ) \end{array} $$
    (28)
  13. 13/

    Gramacy and Lee (2008) function:

    Parameters: x1,x2 ∈ [− 2, 6]

    $$ f_{13}(\mathbf{x}) = x_{1} \exp(- {x^{2}_{1}} - {x^{2}_{2}}) $$
    (29)
  14. 14/

    Sasena function:

    Parameters: x1,x2 ∈ [0.0, 5]

    $$\begin{array}{@{}rcl@{}} f_{14}(\mathbf{x}) &=& 2 + 0.01(x_{2}-{x_{1}^{2}})^{2} + (1-x_{1})^{2}\\ && + 2(2-x_{2})^{2} + 7 \sin(0.5x_{1})\sin(0.7x_{1}x_{2})\\ \end{array} $$
    (30)
  15. 15/

    Gramacy and Lee (2012) function:

    Parameters: x ∈ [0.5, 2.5]

    $$ f_{15}(x) = \frac{\sin(10 \pi x)}{2 x} + (x-1)^{4} $$
    (31)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Salem, M., Tomaso, L. Automatic selection for general surrogate models. Struct Multidisc Optim 58, 719–734 (2018). https://doi.org/10.1007/s00158-018-1925-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-1925-3

Keywords

Navigation