Skip to main content
Log in

Generalized Mehler formula for time-dependent non-selfadjoint quadratic operators and propagation of singularities

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study evolution equations associated to time-dependent dissipative non-selfadjoint quadratic operators. We prove that the solution operators to these non-autonomous evolution equations are given by Fourier integral operators whose kernels are Gaussian tempered distributions associated to non-negative complex symplectic linear transformations, and we derive a generalized Mehler formula for their Weyl symbols. Some applications to the study of the propagation of Gabor singularities (characterizing the lack of Schwartz regularity) for the solutions to non-autonomous quadratic evolution equations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Even in the case when Hamiltonians actually do not depend on time.

  2. Determined up to its sign.

  3. A set invariant under multiplication with positive reals.

References

  1. Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati Equations. In Control and Systems Theory, Systems and Control: Foundations and Applications. Birkhäuser Verlag, Basel (2003)

    Book  Google Scholar 

  2. Cappiello, M., Rodino, L., Toft, J.: On the inverse to the harmonic oscillator. Commun. Part. Differ. Equ. 40(6), 1096–1118 (2015)

    Article  MathSciNet  Google Scholar 

  3. Combescure, M.: The squeezed state approach of the semiclassical limit of the time-dependent Schrödinger equation. J. Math. Phys. 33(11), 3870–3880 (1992)

    Article  MathSciNet  Google Scholar 

  4. Combescure, M., Robert, D.: Semiclassical spreading of quantum wavepackets and applications near unstable fixed points of the classical flow. Asymptot. Anal. 14(4), 377–404 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Combescure, M., Robert, D.: Quadratic quantum Hamiltonians revisited. Cubo 8(1), 61–86 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Combescure, M., Robert, D.: Coherent States and Applications in Mathematical Physics, Theoretical and Mathematical Physics. Springer, Dordrecht (2012)

    MATH  Google Scholar 

  7. Coron, J.-M.: Control and Nonlinearity, Mathematical Surveys and Monographs 136, AMS, Providence, RI (2007)

  8. Folland, G.B.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  9. de Gosson, M.: On the Weyl representation of metaplectic operators. Lett. Math. Phys. 72(2), 129–142 (2005)

    Article  MathSciNet  Google Scholar 

  10. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)

    Book  Google Scholar 

  11. Hagedorn, G.A.: Raising and lowering operators for semiclassical wave packets. Ann. Phys. 269(1), 77–104 (1998)

    Article  MathSciNet  Google Scholar 

  12. Hitrik, M., Pravda-Starov, K.: Spectra and semigroup smoothing for non-elliptic quadratic operators. Math. Ann. 344, 801–846 (2009)

    Article  MathSciNet  Google Scholar 

  13. Hitrik, M., Pravda-Starov, K.: Semiclassical hypoelliptic estimates for non-selfadjoint operators with double characteristics. Commun. Part. Differ. Equ. 35(6), 988–1028 (2010)

    Article  MathSciNet  Google Scholar 

  14. Hitrik, M., Pravda-Starov, K.: Eigenvalues and subelliptic estimates for non-selfadjoint semiclassical operators with double characteristics. Ann. Inst. Fourier 63(3), 985–1032 (2013)

    Article  MathSciNet  Google Scholar 

  15. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. III. Springer, Berlin (1983)

    MATH  Google Scholar 

  16. Hörmander, L.: Quadratic hyperbolic operators, Microlocal Analysis and Applications, Lecture Notes in Math. 1495, (eds.) L. Cattabriga, L. Rodino, pp. 118–160. Springer (1991)

    Chapter  Google Scholar 

  17. Hörmander, L.: Symplectic classification of quadratic forms and general Mehler formulas. Math. Z. 219(3), 413–449 (1995)

    Article  MathSciNet  Google Scholar 

  18. Laptev, A., Sigal, I.M.: Global Fourier integral operators and semiclassical asymptotics. Rev. Math. Phys. 12(5), 749–766 (2000)

    Article  MathSciNet  Google Scholar 

  19. Lerner, N.: Metrics on the Phase Space and Non-selfadjoint Pseudo-differential Operators, Pseudo-Differential Operators, Theory and Applications, Vol. 3, Birkhäuser (2010)

  20. Mehler, F.G.: Ueber die Entwicklung einer Function von beliebig vielen Variablen nach Laplaceschen Functionen höherer Ordnung. J. Reine Angew. Math. 66, 161–176 (1866)

    Article  MathSciNet  Google Scholar 

  21. Mehlig, B., Wilkinson, M.: Semiclassical trace formulae using coherent states. Ann. Phys. 10(6–7), 541–559 (2001)

    Article  MathSciNet  Google Scholar 

  22. Ottobre, M., Pavliotis, G.A., Pravda-Starov, K.: Exponential return to equilibrium for hypoelliptic quadratic systems. J. Funct. Anal. 262(9), 4000–4039 (2012)

    Article  MathSciNet  Google Scholar 

  23. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    MATH  Google Scholar 

  24. Pravda-Starov, K.: Subelliptic estimates for quadratic differential operators. Am. J. Math. 133(1), 39–89 (2011)

    Article  MathSciNet  Google Scholar 

  25. Pravda-Starov, K., Rodino, L., Wahlberg, P.: Propagation of Gabor singularities for Schrödinger equations with quadratic Hamiltonians, to appear in Mathematische Nachrichten (2017)

    Article  Google Scholar 

  26. Robert, D.: Remarks on asymptotic solutions for time-dependent Schrödinger equations, Optimal control and partial differential equations, 188–197. IOS, Amsterdam (2001)

    Google Scholar 

  27. Rodino, L., Wahlberg, P.: The Gabor wave front set. Monatsh. Math. 173, 625–655 (2014)

    Article  MathSciNet  Google Scholar 

  28. Shubin, M.A.: Pseudodifferential operators and spectral theory, Translated from the 1978 Russian original by Stig I. Andersson, 2nd edn. Springer, Berlin (2001)

    MATH  Google Scholar 

  29. Unterberger, A.: Oscillateur harmonique et opérateurs pseudo-différentiels. Ann. Inst. Fourier 29(3), 201–221 (1979)

    Article  MathSciNet  Google Scholar 

  30. Unterberger, A.: Les opérateurs métaplectiques. Complex analysis, microlocal calculus and relativistic quantum theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979), pp. 205-241, Lecture Notes in Phys. 126, Springer, Berlin-New York (1980)

  31. Viola, J.: Non-elliptic quadratic forms and semiclassical estimates for non-selfadjoint operators. Int. Math. Res. Not. 20, 4615–4671 (2013)

    Article  MathSciNet  Google Scholar 

  32. Viola, J.: Spectral projections and resolvent bounds for partially elliptic quadratic differential operators. J. Pseudo Differ. Oper. Appl. 4, 145–221 (2013)

    Article  MathSciNet  Google Scholar 

  33. Weinstein, A.: A symbol class for some Schrödinger equations on \(\mathbb{R}^n\). Am. J. Math. 107(1), 1–21 (1985)

    Article  MathSciNet  Google Scholar 

  34. Weinstein, A., Zelditch, S.: Singularities of solutions of some Schrödinger equations on \(\mathbb{R}^{n}\). Bull. Am. Math. Soc. (N.S.) 6(3), 449–452 (1982)

    Article  Google Scholar 

  35. Zelditch, S.: Reconstruction of singularities for solutions of Schrödinger’s equation. Commun. Math. Phys. 90(1), 1–26 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Pravda-Starov.

Additional information

Communicated by Y. Giga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pravda-Starov, K. Generalized Mehler formula for time-dependent non-selfadjoint quadratic operators and propagation of singularities. Math. Ann. 372, 1335–1382 (2018). https://doi.org/10.1007/s00208-018-1667-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1667-y

Mathematics Subject Classification

Navigation