Skip to main content
Log in

Collapsing limits of the Kähler–Ricci flow and the continuity method

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider the Kähler–Ricci flow on certain Calabi–Yau fibration, which is a Calabi–Yau fibration with one dimensional base or a product of two Calabi–Yau fibrations with one dimensional bases. Assume the Kähler–Ricci flow on total space admits a uniform lower bound for Ricci curvature, then the flow converges in Gromov–Hausdorff topology to the metric completion of the regular part of generalized Kähler–Einstein current on the base, which is a compact length metric space homeomorphic to the base. The analogue results for the continuity method on such Calabi–Yau fibrations are also obtained. Moreover, we show the continuity method starting from a suitable Kähler metric on the total space of a Fano fibration with one dimensional base converges in Gromov–Hausdorff topology to a compact metric on the base. During the proof, we show the metric completion of the regular part of a generalized Kähler–Einstein current on a Riemann surface is compact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aubin, T.: Équations du type Monge–Ampère sur les variétés kähleriennes compactes. C. R. Acad. Sci. Paris Sér. A-B 283(3, Aiii), A119–A121 (1976)

  2. Barth, W., Hulek, K., Peters, C., Van de Ven, A.: Compact Complex Surfaces, 2nd edn. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  3. Berman, R.: K-polystability of \(\mathbb{Q}\)-Fano varieties admitting Kähler–Einstein metrics. Invent. Math. 203(3), 973–1025 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boucksom, S., Jonsson, M.: Tropical and non-archimedean limits of degenerating families of volume forms. Journal de l’École polytechnique-Mathématiques 4, 87–139 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded from below. I. J. Differ. Geom. 46, 406–480 (1997)

    Article  MATH  Google Scholar 

  6. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded from below. II. J. Differ. Geom. 52, 13–35 (1999)

    MATH  Google Scholar 

  7. Demailly, J.-P., Paun, M.: Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. Math. (2) 159(3), 1247–1274 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eriksson, D., Freixas i Montplet, G., Mourougane, C.: Singularities of metrics on Hodge bundles and their topological invariants. arXiv:1611.03017

  9. Eyssidieux, P., Guedj, V., Zeriahi, A.: Singular Kähler–Einstein metrics. J. Am. Math. Sci. 22(3), 607–639 (2009)

    Article  MATH  Google Scholar 

  10. Fong, F.T.-H., Zhang, Z.: The collapsing rate of the Kähler–Ricci flow with regular infinite time singularities. J. Reine Angew. Math. 703, 95–113 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Fu, X., Guo, B., Song, J.: Geometric estimates for complex Monge–Ampère equation. arXiv:1706.01527

  12. Gill, M.: Collapsing of products along the Kähler–Ricci flow. Trans. Am. Math. Soc. 366(7), 3907–3924 (2014)

    Article  MATH  Google Scholar 

  13. Gross, M., Tosatti, V., Zhang, Y.G.: Collapsing of abelian fibred Calabi–Yau manifolds. Duke Math. J. 162(3), 517–551 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gross, M., Tosatti, V., Zhang, Y.G.: Gromov-Hausdorff collapsing of Calabi–Yau manifolds. Commun. Anal. Geom. 24(1), 93–113 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hein, H.-J.: Gravitational instantons from rational elliptic surfaces. J. Am. Math. Soc. 25(2), 355–393 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kołodziej, S.: The complex Monge–Ampère equation. Acta Math. 180(1), 69–117 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. La Nave, G., Tian, G.: A continuity method to construct canonical metrics. Math. Ann. 365, 911–921 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lazarsfeld, J.: Positivity in Algebraic Geometry. I, II, A Series of Modern Survays in Mathematics, vol. 48. Springer, Berlin (2004)

    Google Scholar 

  19. Peters, C.: A criterion for flatness of Hodge bundles over curves and geometric applications. Math. Ann. 268, 1–19 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rubinstein, Y.: Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kahler metrics. Adv. Math. 218, 1526–1565 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schmid, W.: Variation of Hodge structure: the singularities of the period mapping. Invent. Math. 22, 211–319 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Song, J., Tian, G.: The Kähler–Ricci flow on surfaces of positive Kodaira dimension. Invent. Math. 170, 609–653 (2006)

    Article  MATH  Google Scholar 

  23. Song, J., Tian, G.: Canonical measures and the Kähler–Ricci flow. J. Am. Math. Soc. 25(2), 303–353 (2012)

    Article  MATH  Google Scholar 

  24. Song, J., Tian, G.: Bounding scalar curvature for global solutions of the Kähler–Ricci flow. Am. J. Math. 138(3), 683–695 (2016)

    Article  MATH  Google Scholar 

  25. Song, J., Tian, G.: The Kähler–Ricci flow through singularities. Invent. Math. 207(2), 519–595 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Song, J., Weinkove, B.: Introduction to the Kähler-Ricci flow, Chapter 3 of ’Introduction to the Kähler–Ricci flow’. In: Boucksom, S., Eyssidieux, P., Guedj, V. (eds) Lecture Notes Math, vol. 2086, Springer (2013)

  27. Tosatti, V.: Adiabatic limits of Ricci-flat Kähler metrics. J. Differ. Geom. 84, 427–453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tosatti, V., Weinkove, B., Yang, X.: The Kähler–Ricci flow, Ricci-flat metrics and collapsing limits. Am. J. Math. arXiv:1408.0161 (to appear)

  29. Tosatti, V., Zhang, Y.G.: Collapsing hyperkähler manifolds. arXiv:1705.03299

  30. Wang, C.-L.: On the incompleteness of the Weil–Petersson metric along degenerations of Calabi–Yau manifolds. Math. Res. Lett. 4(1), 157–171 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  MATH  Google Scholar 

  32. Zhang, Y.S., Zhang, Z.L.: The continuity method on minimal elliptic Kähler surfaces. Int. Math. Res. Not. https://doi.org/10.1093/imrn/rnx209 (to appear)

  33. Zhang, Y.S., Zhang, Z.L.: The continuity method on Fano fibrations. arXiv:1612.01348

Download references

Acknowledgements

The author is grateful to Professor Huai-Dong Cao for constant encouragement and support and Professor Valentino Tosatti for his crucial help during this work, valuable suggestions on a previous draft and constant encouragement. He also thanks Professor Hans-Joachim Hein for communications which motivate Remark 3, Professor Chengjie Yu for useful comments on a previous draft, Professor Zhenlei Zhang for collaboration and encouragement and Peng Zhou for kind help. This work was carried out while the author was visiting Department of Mathematics at Northwestern University, which he would like to thank for the hospitality. The author is grateful to the referee and editor for their careful reading and very useful suggestions and corrections, which help to improve this paper. Very recently, Fu et al. [11] made a big progress on studying the geometry of the continuity method. They proved that the diameter of \(\omega (t)\) solving from the continuity method (1.8) or (1.11) is uniformly bounded. Their result in particular gives an alternative proof for the diameter upper bound of the continuity method involved in proofs of Theorems 4, 5 and 7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashan Zhang.

Additional information

Communicated by Ngaiming Mok.

The author is partially supported by the Project MYRG2015-00235-FST of the University of Macau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. Collapsing limits of the Kähler–Ricci flow and the continuity method. Math. Ann. 374, 331–360 (2019). https://doi.org/10.1007/s00208-018-1676-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1676-x

Mathematics Subject Classification

Navigation