Skip to main content
Log in

Rapid determination of 12 antibiotics and caffeine in sewage and bioreactor effluent by online column-switching liquid chromatography/tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study presents a column-switching solid-phase extraction online-coupled to a liquid chromatography/tandem mass spectrometry (SPE-LC-MS/MS) method for simultaneous analysis of 12 antibiotics (7 sulfonamides and 5 fluoroquinolones) and caffeine detected in the sewage and effluent of a pilot anaerobic reactor used in sewage treatment. After acidification and filtration, the samples were directly injected into a simple and conventional LC system. Backflush and foreflush modes were compared based on the theoretical plates and peak asymmetry observed. The method was tested in terms of detection (MDL) and quantification limit (MQL), linearity, relative recovery, and precision intra- and inter-day in lab-made sewage samples. The method presented suitable figures of merit in terms of detection, varying from 8.00 × 10−5 to 6.00 × 10−2 ng (0.800 up to 600 ng L−1; caffeine) with direct injection volume of only 100 μL and 13 min of total analysis time (sample preparation and chromatographic run). When the method was applied in the analysis of sewage and effluent of the anaerobic reactor (n = 15), six antibiotics and caffeine were detected in concentrations ranging from 0.018 to 1097 μg L−1. To guarantee a reliable quantification, standard addition was used to overcome the matrix effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13. doi:10.1016/j.ecolind.2007.06.002

    Article  CAS  Google Scholar 

  2. Le-Minh N, Stuetz RM, Khan SJ (2012) Determination of six sulfonamide antibiotics, two metabolites and trimethoprim in wastewater by isotope dilution liquid chromatography/tandem mass spectrometry. Talanta 89:407–416. doi:10.1016/j.talanta.2011.12.053

    Article  CAS  Google Scholar 

  3. Gil García MD, Belmonte Gallegos A, Valverde RS, Martínez Galera M (2012) Determination of (fluoro)quinolones in environmental water using online preconcentration with column switching linked to large sample volumes and fluorescence detection. J Sep Sci 35:823–831. doi:10.1002/jssc.201100911

    Article  Google Scholar 

  4. Gros M, Rodríguez-Mozaz S, Barceló D (2012) Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem. J Chromatogr A 1248:104–121. doi:10.1016/j.chroma.2012.05.084

    Article  CAS  Google Scholar 

  5. Seifrtová M, Aufartová J, Vytlacilová J, Pena A, Solich P, Nováková L (2010) Determination of fluoroquinolone antibiotics in wastewater using ultra high-performance liquid chromatography with mass spectrometry and fluorescence detection. J Sep Sci 33:2094–2108. doi:10.1002/jssc.201000215

    Article  Google Scholar 

  6. Zhou L-J, Ying G-G, Liu S, Zhao J-L, Yang B, Chen Z-F, Lai H-J (2013) Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Sci Total Environ 452–453:365–376. doi:10.1016/j.scitotenv.2013.03.010

    Article  Google Scholar 

  7. Zwiener C (2007) Occurrence and analysis of pharmaceuticals and their transformation products in drinking water treatment. Anal Bioanal Chem 387:1159–1162. doi:10.1007/s00216-006-0818-2

    Article  CAS  Google Scholar 

  8. Qi W, Singer H, Berg M, Müller B, Pernet-Coudrier B, Liu H, Qu J (2015) Elimination of polar micropollutants and anthropogenic markers by wastewater treatment in Beijing, China. Chemosphere 119:1054–1061. doi:10.1016/j.chemosphere.2014.09.027

    Article  CAS  Google Scholar 

  9. Sui Q, Huang J, Deng S, Yu G, Fan Q (2010) Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Res 44:417–426. doi:10.1016/j.watres.2009.07.010

    Article  CAS  Google Scholar 

  10. Buerge IJ, Poiger T, Muller MD, Hans-Rudolf B (2003) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol 37:691–700. doi:10.1021/es020125z

    Article  CAS  Google Scholar 

  11. Hillebrand O, Nödler K, Licha T, Sauter M, Geyer T (2012) Caffeine as an indicator for the quantification of untreated wastewater in karst systems. Water Res 46:395–402. doi:10.1016/j.watres.2011.11.003

    Article  CAS  Google Scholar 

  12. Brandt EMF, de Queiroz FB, Afonso RJCF, Aquino SF, Chernicharo CAL (2013) Behaviour of pharmaceuticals and endocrine disrupting chemicals in simplified sewage treatment systems. J Environ Manag 128:718–726. doi:10.1016/j.jenvman.2013.06.003

    Article  CAS  Google Scholar 

  13. Cruz-Morató C, Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D, Marco-Urrea E, Vicent T, Sarrà M (2013) Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Res 47:5200–5210. doi:10.1016/j.watres.2013.06.007

    Article  Google Scholar 

  14. Locatelli MAF, Sodré FF, Jardim WF (2011) Determination of antibiotics in Brazilian surface waters using liquid chromatography-electrospray tandem mass spectrometry. Arch Environ Contam Toxicol 60:385–393. doi:10.1007/s00244-010-9550-1

    Article  CAS  Google Scholar 

  15. Abraham W-R, Macedo AJ, Gomes LH, Tavares FCA (2007) Occurrence and resistance of pathogenic Bacteria along the Tietê River downstream of São Paulo in Brazil. Clean – Soil, Air, Water 35:339–347. doi:10.1002/clen.200700011

    Article  CAS  Google Scholar 

  16. Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T, Ankley GT, Beazley KF, Belanger SE, Berninger JP, Carriquiriborde P, Coors A, Deleo PC, Dyer SD, Ericson JF, Gagné F, Giesy JP, Gouin T, Hallstrom L, Karlsson MV, Larsson DGJ, Lazorchak JM, Mastrocco F, McLaughlin A, McMaster ME, Meyerhoff RD, Moore R, Parrott JL, Snape JR, Murray-Smith R, Servos MR, Sibley PK, Straub JO, Szabo ND, Topp E, Tetreault GR, Trudeau VL, Van Der Kraak G (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120:1221–1229. doi:10.1289/ehp.1104477

    Article  Google Scholar 

  17. Huerta B, Marti E, Gros M, López P, Pompêo M, Armengol J, Barceló D, Balcázar JL, Rodríguez-Mozaz S, Marcé R (2013) Exploring the links between antibiotic occurrence, antibiotic resistance, and bacterial communities in water supply reservoirs. Sci Total Environ 456–457:161–170. doi:10.1016/j.scitotenv.2013.03.071

    Article  Google Scholar 

  18. Ingerslev F, Halling-Sørensen B (2000) Biodegradability properties of sulfonamides in activated sludge. Environ Toxicol Chem 19:2467–2473. doi:10.1002/etc.5620191011

    Article  CAS  Google Scholar 

  19. Picó Y, Andreu V (2007) Fluoroquinolones in soil—risks and challenges. Anal Bioanal Chem 387:1287–1299. doi:10.1007/s00216-006-0843-1

    Article  Google Scholar 

  20. García-Galán MJ, Silvia Díaz-Cruz M, Barceló D (2010) Identification and determination of metabolites and degradation products of sulfonamide antibiotics. Trends Anal Chem 27:1008–1022. doi:10.1016/j.trac.2008.10.001

    Article  Google Scholar 

  21. García-Galán MJ, Villagrasa M, Díaz-Cruz MS, Barceló D (2010) LC-QqLIT MS analysis of nine sulfonamides and one of their acetylated metabolites in the Llobregat River basin. Quantitative determination and qualitative evaluation by IDA experiments. Anal Bioanal Chem 397:1325–1334. doi:10.1007/s00216-010-3630-y

    Article  Google Scholar 

  22. Jelic A, Fatone F, Di Fabio S, Petrovic M, Cecchi F, Barcelo D (2012) Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment. Sci Total Environ 433:352–361. doi:10.1016/j.scitotenv.2012.06.059

    Article  CAS  Google Scholar 

  23. Seifrtová M, Nováková L, Lino C, Pena A, Solich P (2009) An overview of analytical methodologies for the determination of antibiotics in environmental waters. Anal Chim Acta 649:158–179. doi:10.1016/j.aca.2009.07.031

    Article  Google Scholar 

  24. Pan J, Zhang C, Zhang Z, Li G (2014) Review of online coupling of sample preparation techniques with liquid chromatography. Anal Chim Acta 815:1–15. doi:10.1016/j.aca.2014.01.017

    Article  CAS  Google Scholar 

  25. García-Galán MJ, Díaz-Cruz MS, Barceló D (2010) Determination of 19 sulfonamides in environmental water samples by automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS). Talanta 81:355–366. doi:10.1016/j.talanta.2009.12.009

    Article  Google Scholar 

  26. Rodríguez E, Navarro-Villoslada F, Benito-Peña E, Marazuela MD, Moreno-Bondi MC (2011) Multiresidue determination of ultratrace levels of fluoroquinolone antimicrobials in drinking and aquaculture water samples by automated online molecularly imprinted solid phase extraction and liquid chromatography. Anal Chem 83:2046–2055. doi:10.1021/ac102839n

    Article  Google Scholar 

  27. Stoob K, Singer HP, Goetz CW, Ruff M, Mueller SR (2005) Fully automated online solid phase extraction coupled directly to liquid chromatography-tandem mass spectrometry. Quantification of sulfonamide antibiotics, neutral and acidic pesticides at low concentrations in surface waters. J Chromatogr A 1097:138–147. doi:10.1016/j.chroma.2005.08.030

    Article  CAS  Google Scholar 

  28. Huntscha S, Singer HP, McArdell CS, Frank CE, Hollender J (2012) Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1268:74–83. doi:10.1016/j.chroma.2012.10.032

    Article  CAS  Google Scholar 

  29. López-Serna R, Pérez S, Ginebreda A, Petrović M, Barceló D (2010) Fully automated determination of 74 pharmaceuticals in environmental and waste waters by online solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry. Talanta 83:410–424. doi:10.1016/j.talanta.2010.09.046

    Article  Google Scholar 

  30. Wode F, Reilich C, van Baar P, Dünnbier U, Jekel M, Reemtsma T (2012) Multiresidue analytical method for the simultaneous determination of 72 micropollutants in aqueous samples with ultra high performance liquid chromatography-high resolution mass spectrometry. J Chromatogr A 1270:118–126. doi:10.1016/j.chroma.2012.10.054

    Article  CAS  Google Scholar 

  31. Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229. doi:10.1016/j.envint.2011.07.012

    Article  Google Scholar 

  32. Dolar D, Gros M, Rodriguez-Mozaz S, Moreno J, Comas J, Rodriguez-Roda I, Barceló D (2012) Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. J Hazard Mater 239–240:64–69. doi:10.1016/j.jhazmat.2012.03.029

    Article  Google Scholar 

  33. Kosutic K, Dolar D, Asperger D, Kunst B (2007) Removal of antibiotics from a model wastewater by RO/NF membranes. Sep Purif Technol 53:244–249. doi:10.1016/j.seppur.2006.07.015

    Article  CAS  Google Scholar 

  34. Wang X-H, Lin AY-C (2012) Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity. Environ Sci Technol 46:12417–12426. doi:10.1021/es301929e

    Article  CAS  Google Scholar 

  35. Fan X, Hao H, Shen X, Chen F, Zhang J (2011) Removal and degradation pathway study of sulfasalazine with Fenton-like reaction. J Hazard Mater 190:493–500. doi:10.1016/j.jhazmat.2011.03.069

    Article  CAS  Google Scholar 

  36. Batista APS and Nogueira RFP (2012) Parameters affecting sulfonamide photo-Fenton degradation – Iron complexation and substituent group. J Photochem Photobiol A Chem 232:8–13. doi:10.1016/j.jphotochem.2012.01.016.37. U.S. Food and Drug Administration, Bioanalytical Method Validation in: Guidance for Industry (2001), p. 1–22

  37. Thompson M, Elisson SLR, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis. Pure Appl Chem 74:835–855

    Article  CAS  Google Scholar 

  38. Agência Nacional de Vigilância Sanitária (ANVISA), Guia para Validacão de Métodos Analíticos e Bioanalíticos, Resolucão RE no 899, de 29/05/2003, 2003. Available from http://www.anvisa.gov.br/legis/resol/2003/re/89903re.htm

  39. Moura RB, Damianovic MHRZ, Foresti E (2012) Nitrogen and carbon removal from synthetic wastewater in a vertical structured-bed reactor under intermittent aeration. J Environ Manag 98:163–167. doi:10.1016/j.jenvman.2012.01.009

    Article  CAS  Google Scholar 

  40. Pozo OJ, Guerrero C, Sancho JV, Ibáñez M, Pitarch E, Hogendoorn E, Hernández F (2006) Efficient approach for the reliable quantification and confirmation of antibiotics in water using on-line solid-phase extraction liquid chromatography/tandem mass spectrometry. J Chromatogr A 1103:83–93. doi:10.1016/j.chroma.2005.10.073

    Article  CAS  Google Scholar 

  41. Díaz-Cruz MS, García-Galán MJ, Barceló D (2008) Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography-quadrupole linear ion trap-mass spectrometry. J Chromatogr A 1193:50–59. doi:10.1016/j.chroma.2008.03.029

    Article  Google Scholar 

  42. Le Fur C, Legeret B, de Sainte Claire P, Wong-Wah-Chung P, Sarakha M (2013) Liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry for the analysis of sulfaquinoxaline byproducts formed in water upon solar light irradiation. Rapid Commun Mass Spectrom 27:722–730. doi:10.1002/rcm.6507

    Article  Google Scholar 

  43. Pfeifer T, Tuerk J, Bester K, Spiteller M (2002) Determination of selected sulfonamide antibiotics and trimethoprim in manure by electrospray and atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 16:663–669. doi:10.1002/rcm.624

    Article  CAS  Google Scholar 

  44. Brenner CGB, Mallmann CA, Arsand DR, Mayer FM, Martins AF (2011) Determination of sulfamethoxazole and trimethoprim and their metabolites in hospital effluent. Clean - Soil, Air, Water 39:28–34. doi:10.1002/clen.201000162

    Article  CAS  Google Scholar 

  45. Carballa M, Omil F, Lema JM, Llompart M, García-Jares C, Rodríguez I, Gómez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38:2918–2926. doi:10.1016/j.watres.2004.03.029

    Article  CAS  Google Scholar 

  46. García-Galán MJ, Díaz-Cruz MS, Barceló D (2011) Occurrence of sulfonamide residues along the Ebro River basin: removal in wastewater treatment plants and environmental impact assessment. Environ Int 37:462–473. doi:10.1016/j.envint.2010.11.011

    Article  Google Scholar 

  47. Gómez MJ, Gómez-Ramos MM, Malato O, Mezcua M, Férnandez-Alba AR (2010) Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography-quadrupole-time-of-flight mass spectrometry with an accurate-mass. J Chromatogr A 1217:7038–7054. doi:10.1016/j.chroma.2010.08.070

    Article  Google Scholar 

  48. Mutavdzić Pavlović D, Babić S, Dolar D, Asperger D, Kosutić K, Horvat AJM, Kastelan-Macan M (2010) Development and optimization of the SPE procedure for determination of pharmaceuticals in water samples by HPLC-diode array detection. J Sep Sci 33:258–267. doi:10.1002/jssc.200900571

    Article  Google Scholar 

  49. Seifrtová M, Pena A, Lino CM, Solich P (2008) Determination of fluoroquinolone antibiotics in hospital and municipal wastewaters in Coimbra by liquid chromatography with a monolithic column and fluorescence detection. Anal Bioanal Chem 391:799–805. doi:10.1007/s00216-008-2020-1

    Article  Google Scholar 

  50. Tagiri-Endo M, Suzuki S, Nakamura T, Hatakeyama T, Kawamukai K (2009) Rapid determination of five antibiotic residues in swine wastewater by online solid-phase extraction-high performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 393:1367–1375. doi:10.1007/s00216-008-2543-5

    Article  CAS  Google Scholar 

  51. Camiloti PR, Mockaitis G, Domingues Rodrigues JA, Rissato Zamariolli Damianovic MH, Foresti E, Zaiat M (2014) Innovative anaerobic bioreactor with fixed-structured bed (ABFSB) for simultaneous sulfate reduction and organic matter removal. J Chem Technol Biotechnol 89:1044–1050. doi:10.1002/jctb.4199

    Article  CAS  Google Scholar 

  52. Mockaitis G, Pantoja JLR, Rodrigues JAD, Foresti E, Zaiat M (2014) Continuous anaerobic bioreactor with a fixed-structure bed (ABFSB) for wastewater treatment with low solids and low applied organic loading content. Bioprocess Biosyst Eng 37:1361–1368. doi:10.1007/s00449-013-1108-y

    Article  CAS  Google Scholar 

  53. Garcia-Ac A, Segura PA, Viglino L, Fürtös A, Gagnon C, Prévost M, Sauvé S (2009) On-line solid-phase extraction of large-volume injections coupled to liquid chromatography-tandem mass spectrometry for the quantitation and confirmation of 14 selected trace organic contaminants in drinking and surface water. J Chromatogr A 1216:8518–8527. doi:10.1016/j.chroma.2009.10.015

    Article  CAS  Google Scholar 

  54. Feitosa-Felizzola J, Temime B, Chiron S (2007) Evaluating on-line solid-phase extraction coupled to liquid chromatography-ion trap mass spectrometry for reliable quantification and confirmation of several classes of antibiotics in urban wastewaters. J Chromatogr A 1164:95–104. doi:10.1016/j.chroma.2007.06.071

    Article  CAS  Google Scholar 

  55. Khan GA, Lindberg R, Grabic R, Fick J (2012) The development and application of a system for simultaneously determining anti-infectives and nasal decongestants using on-line solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 66:24–32. doi:10.1016/j.jpba.2012.02.011

    Article  CAS  Google Scholar 

  56. Queiroz FB, Brandt EMF, Aquino SF, Chernicharo CAL, Afonso RJ (2012) Occurrence of pharmaceuticals and endocrine disruptors in raw sewage and their behavior in UASB reactors operated at different hydraulic retention times. Water Sci Technol 66:2562–2569. doi:10.2166/wst.2012.482

    Article  CAS  Google Scholar 

  57. Gros M, Rodríguez-Mozaz S, Barceló D (2013) Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J Chromatogr A 1292:173–188. doi:10.1016/j.chroma.2012.12.072

    Article  CAS  Google Scholar 

  58. Commission Decision (2002/657/EC) of 12 August 2002, Implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results, Official Journal of the European Communities L221, Brussels, Belgium, p. 8

  59. Barreiro JC, Vanzolini KL, Cass QB (2011) Direct injection of native aqueous matrices by achiral-chiral chromatography ion trap mass spectrometry for simultaneous quantification of pantoprazole and lansoprazole enantiomers fractions. J Chromatogr A 1218:2865–2870. doi:10.1016/j.chroma.2011.02.064

    Article  CAS  Google Scholar 

  60. Renew JE, Huang C-H (2004) Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography–electrospray mass spectrometry. J Chromatogr A 1042:113–121. doi:10.1016/j.chroma.2004.05.056

    Article  CAS  Google Scholar 

  61. Ciofi L, Fibbi D, Chiuminatto U, Coppini E, Checchini L, Del Bubba M (2013) Fully-automated on-line solid phase extraction coupled to high-performance liquid chromatography-tandem mass spectrometric analysis at sub-ng/L levels of selected estrogens in surface water and wastewater. J Chromatogr A 1283:53–61. doi:10.1016/j.chroma.2013.01.084

    Article  CAS  Google Scholar 

  62. Zhou LJ, Ying GG, Liu S, Zhao JL, Chen F, Zhang RQ, Peng FQ, Zhang QQ (2012) Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A 1244:123–138. doi:10.1016/j.chroma.2012.04.076

    Article  CAS  Google Scholar 

  63. Batt AL, Snow DD, Aga DS (2006) Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA. Chemosphere 64:1963–1971. doi:10.1016/j.chemosphere.2006.01.029

    Article  CAS  Google Scholar 

  64. Li B, Zhang T, Xu Z, Fang HHP (2009) Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra performance liquid chromatography-tandem mass spectrometry. Anal Chim Acta 645:64–72. doi:10.1016/j.aca.2009.04.042

    Article  CAS  Google Scholar 

  65. Senta I, Terzić S, Ahel M (2008) Simultaneous determination of sulfonamides, fluoroquinolones, macrolides and trimethoprim in wastewater and river water by LC-tandem-MS. Chromatographia 68:747–758. doi:10.1365/s10337-008-0780-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Fapesp (projects no. 12/07153-4, 10/19910-9, and 09/15984-0) and CNPq projects no. 475756/2013-4 for financial support.

Conflict of interest

The authors declare no conflict of interest relating to the material presented in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo C. F. Lima Gomes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima Gomes, P.C.F., Tomita, I.N., Santos-Neto, Á.J. et al. Rapid determination of 12 antibiotics and caffeine in sewage and bioreactor effluent by online column-switching liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem 407, 8787–8801 (2015). https://doi.org/10.1007/s00216-015-9038-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9038-y

Keywords

Navigation