Skip to main content
Log in

The Newtonian Limit for Perfect Fluids

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that there exists a class of non-stationary solutions to the Einstein-Euler equations which have a Newtonian limit. The proof of this result is based on a symmetric hyperbolic formulation of the Einstein-Euler equations which contains a singular parameter v T /c, where v T is a characteristic velocity scale associated with the fluid and c is the speed of light. The symmetric hyperbolic formulation allows us to derive ε independent energy estimates on weighted Sobolev spaces. These estimates are the main tool used to analyze the behavior of solutions in the limit ↘ 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartnik R. (1986). The Mass of an Asymptotically Flat Manifold. Comm. Pure Appl. Math. 39: 661–693

    Article  MATH  MathSciNet  Google Scholar 

  2. Blanchet L. and Damour T. (1986). Radiative gravitational fields in general relativity. I. General structure of the field outside the source. Phil. Trans. Roy. Soc. Lond. A 320: 379–430

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Blanchet L., Faye G. and Nissanke S. (2005). On the structure of the post-Newtonian expansion in general relativity. Phys. Rev. D 72: 44024

    Article  ADS  MathSciNet  Google Scholar 

  4. Brauer, U., Karp, L.: Local existence of classical solutions for the Einstein-Euler system using weighted Sobolev spaces of fractional order. Preprint, available at http://www.math.uni-potsdam.de/prof/a_partdiff/prep/2006_17.pdf, 2006

  5. Browning G. and Kreiss H.O. (1982). Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42: 704–718

    Article  MATH  MathSciNet  Google Scholar 

  6. Chandrasekhar S. (1965). The post-Newtonian equations of hydrodynamics in general relativity. Ap. J. 142: 1488–1512

    Article  ADS  MathSciNet  Google Scholar 

  7. Choquet-Bruhat Y. and Christodoulou D. (1981). Elliptic systems in H s spaces on manifolds which are Euclidean at infinity. Acta. Math. 146: 129–150

    Article  MATH  MathSciNet  Google Scholar 

  8. Chruściel P.T. and Delay E. (2003). On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. Mem. Soc. Math. France 94: 1–103

    Google Scholar 

  9. Dautcourt G. (1964). Die Newtonsche Gravitationstheorie als strenger Grenzfall der Allgemeinen Relativitätstheorie. Acta Phys. Polonica 25: 637–646

    MathSciNet  Google Scholar 

  10. Deimling K. (1998). Nonlinear functional analysis. Springer-Verlag, Berlin

    Google Scholar 

  11. Duval C., Burdet G., Künzle H.P. and Perrin M. (1985). Bargmann structures and Newton-Cartan theory. Phys. Rev. D. 31: 1841–1853

    Article  ADS  MathSciNet  Google Scholar 

  12. Ehlers, J.: On limit relations between, and approximative explanations of, physical theories. In: R. Barcan Marcus, G.J.W. Dorn, P. Weingartner, Logic, methodology and philosophy of science VII, Amsterdam: North Holland, 1986, pp. 387-403

  13. Einstein A., Infeld L. and Hoffmann B. (1938). The gravitational equations and the problem of motion. Ann. Math. 39: 65–100

    Article  MathSciNet  Google Scholar 

  14. Frauendiener J. (2003). A note on the relativistic Euler equations. Class. Quantum Grav. 20: L193–196

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Friedrich H. (1998). Evolution equations for gravitating ideal fluid bodies in general relativity. Phys. Rev. D 57: 2317–2322

    Article  ADS  MathSciNet  Google Scholar 

  16. Frittelli S. and Reula O. (1994). On the Newtonian limit of general relativity. Commun. Math. Phys. 166: 221–235

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Heilig U. (1995). On the Existence of Rotating Stars in General Relativity. Commun. Math. Phys. 166: 457–493

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Iriondo M.S., Mirta S., Leguizamón E.O. and Reula O.A. (1998). Fast and slow solutions in general relativity: the initialization procedure. J. Math. Phys. 39: 1555–1565

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Klainerman S. and Majda A. (1982). Compressible and incompressible fluids. Comm. Pure Appl. Math. 35: 629–651

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Künzle H.P. (1972). Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics. Ann. Inst. Henri Poincaré 17: 337–362

    Google Scholar 

  21. Künzle H.P. (1976). Covariant Newtonian limit of Lorentz space-times. Gen. Rel. Grav. 7: 445–457

    MATH  ADS  Google Scholar 

  22. Künzle H.P. and Duval C. (1986). Relativistic and non-relativistic classical field theory on five-dimensional spacetime. Class. Quantum Grav. 3: 957–974

    Article  MATH  ADS  Google Scholar 

  23. Lottermoser M. (1992). A convergent post-Newtonian approximation for the constraints in general relativity. Ann. Inst. Henri Poincaré 57: 279–317

    MATH  MathSciNet  Google Scholar 

  24. Makino, T.: On a local existence theorem for the evolution equation of gaseous stars. In: Patterns and Waves, edited by T. Nishida, M. Mimura, H. Fujii, Amsterdam: North-Holland, 1986

  25. Maxwell, D.: Rough solutions of the Einstein constraint equations. Preprint, available at http://arxiv.org/ list/gr-qc/0405088, 2004

  26. Noundjeu, P.: On the non-relativistic limit of the spherically symmetric Einstein-Vlasov-Maxwell system. Preprint available at http://arxiv.org/list/gr-qc/0508078, 2005

  27. Oliynyk, T.A.: Post-Newtonian expansions for perfect fluids. In preparation.

  28. Oliynyk T.A. (2005). Newtonian perturbations and the Einstein-Yang-Mills-dilaton equations. Class. Quantum Grav. 22: 2269–2294

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Oliynyk T.A. (2006). An existence proof for the gravitating BPS monopole. Inst. Henri Poincaré 7: 199–232

    Article  MATH  MathSciNet  Google Scholar 

  30. Oliynyk, T.A., Woolgar, E.: Asymptotically flat Ricci flows. Preprint, available at http://arxiv.org/list/ math/0607438, 2006

  31. Pati M.E. and Will C.M. (2000). Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations: foundations. Phys. Rev. D 62: 124015

    Article  ADS  MathSciNet  Google Scholar 

  32. Rein G. and Rendall A.D. (1992). The Newtonian limit of the spherically symmetric Vlasov-Einstein system. Commun. Math. Phys. 150: 585–591

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Rendall A.D. (1990). Convergent and divergent perturbation series and the post-Minkowskian approximation scheme. Class. Quantum Grav. 7: 803–812

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Rendall A.D. (1992). The initial value problem for a class of general relativistic fluid bodies. J. Math. Phys. 33: 1047–1053

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Rendall A.D. (1992). On the definition of post-Newtonian approximations. Proc. R. Soc. Lond. A 438: 341–360

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Rendall A.D. (1994). The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system. Comm. Math. Phys. 163: 89–112

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Schochet S. (1986). Symmetric hyperbolic systems with a large parameter. Comm. partial differential equations 11: 1627–1651

    Article  MATH  MathSciNet  Google Scholar 

  38. Schochet S. (1988). Asymptotics for symmetric hyperbolic systems with a large parameter. J. differential equations 75: 1–27

    Article  MATH  MathSciNet  Google Scholar 

  39. Taylor M.E. (1996). Partial differential equations III, nonlinear equations. Springer, New York

    Google Scholar 

  40. Walton R.A. (2005). A symmetric hyperbolic structure for isentropic relativistic perfect fluids. Houston J. Math. 31: 145–160

    MATH  MathSciNet  Google Scholar 

  41. Will C.M. (2005). Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with spinning bodies. Phys. Rev. D 71: 084027

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd A. Oliynyk.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliynyk, T.A. The Newtonian Limit for Perfect Fluids. Commun. Math. Phys. 276, 131–188 (2007). https://doi.org/10.1007/s00220-007-0334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0334-z

Keywords

Navigation