Skip to main content
Log in

On the Mixing Time of the 2D Stochastic Ising Model with “Plus” Boundary Conditions at Low Temperature

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the Glauber dynamics for the 2D Ising model in a box of side L, at inverse temperature β and random boundary conditions τ whose distribution P either stochastically dominates the extremal plus phase (hence the quotation marks in the title) or is stochastically dominated by the extremal minus phase. A particular case is when P is concentrated on the homogeneous configuration identically equal to +  (equal to −). For β large enough we show that for any \({\varepsilon >0 }\) there exists \({c=c(\beta,\varepsilon)}\) such that the corresponding mixing time T mix satisfies \({{\rm lim}_{L\to\infty}\,{\bf P}\left(T_{\rm mix}\ge {\rm exp}({cL^\varepsilon})\right) =0}\). In the non-random case τ ≡ +  (or τ ≡ −), this implies that \({T_{\rm mix}\le {\rm exp}({cL^\varepsilon})}\). The same bound holds when the boundary conditions are all +  on three sides and all − on the remaining one. The result, although still very far from the expected Lifshitz behavior T mix = O(L 2), considerably improves upon the previous known estimates of the form \({T_{\rm mix}\le {\rm exp}({c L^{\frac 12 + \varepsilon}})}\). The techniques are based on induction over length scales, combined with a judicious use of the so-called “censoring inequality” of Y. Peres and P. Winkler, which in a sense allows us to guide the dynamics to its equilibrium measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander K.S.: The spectral gap of the 2-D stochastic ising model with nearly single-spin boundary conditions. J. Stat. Phys. 104, 59–87 (2001)

    Article  MATH  Google Scholar 

  2. Alexander K.S., Yoshida N.: The spectral gap of the 2-D stochastic Ising model with mixed boundary conditions. J. Stat. Phys. 104, 89–109 (2001)

    MATH  MathSciNet  Google Scholar 

  3. Higuchi, Y., Yoshida, N.: Slow relaxation of 2-D stochastic Ising models with random and non-random boundary conditions. In: New Trends in Stochastic Analysis, (Charingworth, England, Sept. 1994), Singapore: World Scientific, 1994, pp. 153–167

  4. Schonmann R.H., Yoshida N.: Exponential relaxation of Glauber dynamics with some special boundary conditions. Commun. Math. Phys. 189(2), 299–309 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Bianchi A.: Glauber dynamics on non-amenable graphs: boundary conditions and mixing time. Electron. J. Probab. 13, 1980–2012 (2008)

    MATH  MathSciNet  Google Scholar 

  6. Bodineau T., Martinelli F.: Some new results on the kinetic Ising model in a pure phase. J. Stat. Phys. 109, 207–235 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caputo P., Martinelli F., Toninelli F.L.: On the approach to equilibrium for a polymer with adsorption and repulsion. Electron. J. Probab. 13, 213–258 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Cesi F., Guadagni G., Martinelli F., Schonmann R.H.: On the 2D stochastic Ising model in the phase coexistence region close to the critical point. J. Stat. Phys. 85, 55–102 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Dobrushin, R., Kotecký, R., Shlosman, S.: Wulff Construction. A global Shape from Local Interaction. Transl. Math. Monographs 104, Providence, RI: Amer. Math. Soc., 1992

  10. Fisher D.S., Huse D.A.: Dynamics of droplet fluctuations in pure and random Ising systems. Phys. Rev. B 35, 6841–6846 (1987)

    Article  ADS  Google Scholar 

  11. Fortuin C.M., Kasteleyn P.W., Ginibre J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22, 89–103 (1971)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Higuchi, Y., Wang, J.: Spectral gap of Ising model for Dobrushin’s boundary condition in two dimensions. Preprint, 1999

  13. Liggett T.M.: Interacting particle systems. Springer Verlag, New York (1985)

    MATH  Google Scholar 

  14. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. Providence, RI: Amer. Math. Soc., 2009

  15. Levin D., Luczak M., Peres Y.: Glauber dynamics for the Mean-field Ising Model: cut-off, critical power law, and metastability. Probab. Theory Related Fields 146(1,2), 223–265 (2010)

    Article  MathSciNet  Google Scholar 

  16. Martinelli F.: On the two dimensional dynamical Ising model in the phase coexistence region. J. Stat. Phys. 76, 1179–1246 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Martinelli, F.: Lectures on Glauber dynamics for discrete spin models. Lecture Notes in Math. 1717, Berlin: Springer, 1999

  18. Martinelli F., Sinclair A., Weitz D.: Glauber dynamics on trees: Boundary conditions and mixing time. Commun. Math. Phys. 250(2), 301–334 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Martinelli, F., Sinclair, A.: Mixing time for the solid-on-solid model. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), New York: Assoc. for Comp. Mach., 2009, pp. 571–580

  20. Martin-Löf A.: Mixing properties, differentiability of the free energy and the central limit theorem for a pure phase in the Ising model at low temperature. Commun. Math. Phys. 32, 75–92 (1973)

    Article  ADS  Google Scholar 

  21. Messager A., Miracle-Solé S., Ruiz J.: Convexity properties of the surface tension and equilibrium crystals. J. Stat. Phys. 67, 449–470 (1992)

    Article  MATH  ADS  Google Scholar 

  22. Peres, Y.: Mixing for Markov Chains and Spin Systems. Available at http://www.stat.berkeley.edu/~peres/ubc.pdf, August 2005

  23. Shlosman S.: The droplet in the tube: a case of phase transition in the canonical ensemble. Commun. Math. Phys. 125, 81–90 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Simon, B.: The Statistical Mechanics of Lattice Gases. Vol. I. Princeton Series in Physics. Princeton, NJ: Princeton University Press, 1993

  25. Sugimine N.: A lower bound on the spectral gap of the 3-dimensional stochastic Ising models. J. Math. Kyoto Univ. 42, 751–788 (2002)

    MATH  MathSciNet  Google Scholar 

  26. Sugimine N.: Extension of Thomas’ result and upper bound on the spectral gap of d(≥ 3)-dimensional stochastic Ising models. J. Math. Kyoto. Univ. 42(1), 141–160 (2002)

    MATH  MathSciNet  Google Scholar 

  27. Thomas L.E.: Bound on the mass gap for finite volume stochastic Ising models at low temperature. Commun. Math. Phys. 126, 1–11 (1989)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Lucio Toninelli.

Additional information

Communicated by H. Spohn

This work was supported by the European Research Council through the “Advanced Grant” PTRELSS 228032, and by ANR through the grants POLINTBIO and LHMSHE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinelli, F., Toninelli, F.L. On the Mixing Time of the 2D Stochastic Ising Model with “Plus” Boundary Conditions at Low Temperature. Commun. Math. Phys. 296, 175–213 (2010). https://doi.org/10.1007/s00220-009-0963-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0963-5

Keywords

Navigation