Skip to main content
Log in

Diffusive Behavior for Randomly Kicked Newtonian Particles in a Spatially Periodic Medium

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove a central limit theorem for the momentum distribution of a particle undergoing an unbiased spatially periodic random forcing at exponentially distributed times without friction. The start is a linear Boltzmann equation for the phase space density, where the average energy of the particle grows linearly in time. Rescaling time, the momentum converges to a Brownian motion, and the position is its time-integral showing superdiffusive scaling with time t 3/2. The analysis has two parts: (1) to show that the particle spends most of its time at high energy, where the spatial environment is practically invisible; (2) to treat the low energy incursions where the motion is dominated by the deterministic force, with potential drift but where symmetry arguments cancel the ballistic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basile, G., Bovier, A.: Convergence of a kinetic equation to a fractional diffusion equation. http://arxiv.org/abs/0909.3385v1 [math.PR], 2009

  2. Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s Law: a Challenge for Theorists, Mathematical Physics 2000, Edited by A. Fokas, A. Grigoryan, T. Kibble, B. Zegarlinsky, London: Imeprial College Press, 2000, pp. 128–151

  3. Chung K.L.: A Course in Probability Theory. Academic Press, New York (1976)

    Google Scholar 

  4. De Masi A., Ferrari P.A., Goldstein S., Wick D.W.: An Invariance Principle for Reversible Markov Processes. Applications to Random Motions in Random Environments. J. Stat. Phys. 55, 767–855 (1989)

    MathSciNet  ADS  Google Scholar 

  5. Goldstein S.: Antisymmetric functionals of reversible Markov processes. Ann. Inst. Henri Poincaré 31, 177–190 (1995)

    MATH  Google Scholar 

  6. Hairer M., Pavliotis G.A.: From ballistic to diffusive behavior in periodic potentials. J. Stat. Phys. 131(1), 175–202 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Hall P., Heyde C.C.: Martingale Limit Theory and Its Application. Academic Press, London-NewYork (1980)

    MATH  Google Scholar 

  8. Husak D.V.: On the joint distribution of the time and value of the first overjump for homogeneous processes with independent increments. Teor. Ver. Primen. 14, 15–23 (1969)

    Google Scholar 

  9. Jara, M., Komorowski, T.: Non-Markovian limits of additive functionals of Markov processes. http://arxiv.org/abs/0905.2163v1 [math.PR], 2009

  10. Jara M., Komorowski T., Olla S.: Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab. 19(6), 2270–2300 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Karatzas I., Shreve S.E.: Brownian Motion and Stochastic Calculus. Springer-Verlag, Berlin-Heidelberg-NewYork (1988)

    MATH  Google Scholar 

  12. Kipnis C., Varadhan S.R.S.: Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104, 1–19 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov Processes. See webpage http://w3.impa.br/~landim/notas.html, 2008

  14. Pollard D.: Convergence of Stochastic Processes. Springer-Verlag, Berlin-Heidelberg-NewYork (1984)

    Book  MATH  Google Scholar 

  15. Weihs D., Teitell M.A., Mason T.G.: Simulations of complex particle transport in heterogeneous active liquids. Microfluid Nanofluid 3, 227–237 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Clark.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, J., Maes, C. Diffusive Behavior for Randomly Kicked Newtonian Particles in a Spatially Periodic Medium. Commun. Math. Phys. 301, 229–283 (2011). https://doi.org/10.1007/s00220-010-1149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1149-x

Keywords

Navigation