Skip to main content
Log in

‘Return to Equilibrium’ for Weakly Coupled Quantum Systems: A Simple Polymer Expansion

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Recently, several authors studied small quantum systems weakly coupled to free boson or fermion fields at positive temperature. All the rigorous approaches we are aware of employ complex deformations of Liouvillians or Mourre theory (the infinitesimal version of the former). We present an approach based on polymer expansions of statistical mechanics. Despite the fact that our approach is elementary, our results are slightly sharper than those contained in the literature up to now. We show that, whenever the small quantum system is known to admit a Markov approximation (Pauli master equation aka Lindblad equation) in the weak coupling limit, and the Markov approximation is exponentially mixing, then the weakly coupled system approaches a unique invariant state that is perturbatively close to its Markov approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bach V., Fröhlich J., Sigal I.: Quantum electrodynamics of confined non-relativistic particles. Adv. Math. 137, 205–298 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bach V., Fröhlich J., Sigal I.: Return to equilibrium. J. Math. Phys. 41, 3985 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bach V., Fröhlich J., Sigal I.M., Soffer A.: Positive commutators and the spectrum of pauli–fierz hamiltonian of atoms and molecules. Commun. Math. Phys. 207(3), S57–587 (1999)

    Article  Google Scholar 

  4. Brattelli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics: 2. Berlin: Springer-Verlag, 2nd edition, 1996

  5. Bricmont J., Kupiainen A.: Random walks in space time mixing environments. Commun. Math. Phys. 134(5-6), 979–1004 (2009)

    MATH  MathSciNet  Google Scholar 

  6. Davies E.B.: Markovian master equations. Commun. Math. Phys. 39, 91–110 (1974)

    Article  ADS  MATH  Google Scholar 

  7. Dereziński, J.: Introduction to Representations of Canonical Commutation and Anticommutation Relations. Volume 695 of Lecture Notes in Physics. Berlin: Springer-Verlag, 2006

  8. Dereziński J., Jakšić V.: Spectral theory of Pauli-Fierz operators. J. Func. Anal. 180, 241–327 (2001)

    Google Scholar 

  9. Dereziński J., Jakšić V.: Return to equilibrium for Pauli-Fierz systems. Ann. H. Poincaré 4, 739–793 (2003)

    Article  MATH  Google Scholar 

  10. Dereziński J., De Roeck W.: Extended weak coupling limit for Pauli-Fierz operators. Commun. Math. Phys. 279(1), 1–30 (2008)

    Article  ADS  MATH  Google Scholar 

  11. Dümcke R.: Convergence of multitime correlation functions in the weak and singular coupling limits. J. Math. Phys. 24(2), 311–315 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  12. Frigerio A.: Stationary states of quantum dynamical semigroups. Commun. Math. Phys. 63(3), 269–276 (1978)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Fröhlich J., Merkli M.: Another return of ‘return to equilibrium’. Commun. Math. Phys. 251, 235–262 (2004)

    Article  ADS  MATH  Google Scholar 

  14. Golénia S.: Positive commutators, fermi golden rule and the spectrum of the zero temperature pauli-fierz hamiltonians. J. Func. Anal. 256(8), 2587–2620 (2009)

    Article  MATH  Google Scholar 

  15. Hubner M., Spohn H.: Spectral properties of the spin-boson hamiltonian. Ann. Inst. H. Poincare 62, 289–323 (1995)

    MathSciNet  Google Scholar 

  16. Jakšić V., Pautrat Y., Pillet C.-A.: Central limit theorem for locally interacting Fermi gas. Common. Math. Phys. 285(1), 175–217 (2009)

    Article  ADS  MATH  Google Scholar 

  17. Jakšić V., Pillet C.-A.: On a model for quantum friction. iii: Ergodic properties of the spin-boson system. Commun. Math. Phys. 178, 627–651 (1996)

    Article  ADS  MATH  Google Scholar 

  18. Jakšić V., Pillet C.-A.: Mathematical theory of non-equilibrium quantum statistical mechanics. J. Stat. Phys. 108, 787–829 (2002)

    Article  MATH  ADS  Google Scholar 

  19. Bricmont J., Kupiainen A.: Coupled analytic maps. Nonlinearity 8, 379–393 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Lebowitz J., Spohn H.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 39, 109–142 (1978)

    Article  Google Scholar 

  21. Lebowitz J.L., Goldstein S., Mastrodonato C., Tumulka R., Zanghi N.: On the approach to thermal equilibrium of macroscopic quantum systems. Phys. Rev. E 81, 011109 (2010)

    Article  ADS  Google Scholar 

  22. Lindblad G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40, 147–151 (1975)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Linden N., Popescu S., Short A.J., Winter A.: Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E 79, 061103 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. Lukkarinen J., Spohn H.: Not to normal order - notes on the kinetic limit for weakly interacting quantum fluids. J. Stat. Phys. 134, 1133–1172 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Maes C., Netočný K.: Spacetime expansions for weakly coupled interacting particle systems. J. Phys. A. 35, 3053–3077 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Reimann P.: Foundation of statistical mechanics under experimentally realistic conditions. Pfys. Rev. Lett. 101, 190403 (2008)

    Article  ADS  Google Scholar 

  27. De Roeck W.: Large deviation generating function for currents in the Pauli-Fierz model. Rev. Math. Phys 21(4), 549–585 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Spohn H.: An algebraic condition for the approach to equilibrium of an open N-level system. Lett. Math. Phys. 2, 33–38 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Ueltschi D.: Cluster expansions and correlation functions. Moscow Math. J. 4, 511–522 (2004)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. De Roeck.

Additional information

Communicated by I.M. Sigal

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Roeck, W., Kupiainen, A. ‘Return to Equilibrium’ for Weakly Coupled Quantum Systems: A Simple Polymer Expansion. Commun. Math. Phys. 305, 797–826 (2011). https://doi.org/10.1007/s00220-011-1247-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1247-4

Keywords

Navigation