Skip to main content
Log in

Microbial reaction rates and bacterial communities in sediment surrounding burrows of two nereidid polychaetes (Nereis diversicolor and N. virens)

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The effects of infaunal mode of life on sediment properties, microbial reaction rates, as well as abundance and composition of bacterial communities were studied in sediment surrounding burrows (mucus lining, oxidised wall, ambient anoxic and surface sediment) of two closely related, but behaviourally different, nereidid polychaete worms: the facultative suspension-feeder Nereis (Hediste) diversicolor and the obligate deposit-feeder Nereis (Neanthes) virens. Burrow sediment of the two species was collected from two adjacent (50 m distance) shallow sandy locations (Kertinge Nor, Denmark). The burrow lining and wall of both polychaete species were enriched in organic matter originating from mucous secretions by the inhabitants and phytoplankton trapped through irrigation. This was more evident for N. diversicolor that shows a significantly higher irrigation rate than N. virens. Both the organic matter mineralisation rates (based on anaerobic incubations) and bacterial abundance were higher along the burrow linings and walls. However, accumulation of porewater TCO2 and dissolved organic carbon in sediments adjacent to burrows increased most rapidly in the presence of N. diversicolor, suggesting higher heterotrophic activity associated with this species. Surprisingly, bacterial abundance was lower around burrows of N. diversicolor than those from N. virens indicating that burrow environments from the first species harbour a more active bacterial community. Molecular fingerprints of the 16S rRNA gene from bacterial communities showed that the composition of the burrow linings and walls resembled the ambient anoxic sediment rather than the oxic sediment surface. On the other hand, the bacterial fingerprints of the sediment surrounding the burrows of the two polychaete species were markedly different suggesting either a site-specific difference in sediment parameters or a significant species-specific impact of the burrow inhabitants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aller RC (1988) Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures. In: Blackburn TH, Sorensen J (eds) Nitrogen cycling in coastal marine environments.Wiley, Chichester, pp301–338

    Google Scholar 

  • Aller JY, Aller RC (1986) Evidence for localized enhancement of biological activity associated with tube and burrow structures in deep-sea sediments at the HEBBLE site, western North Atlantic. Deep Sea Res 33:755–790

    Article  CAS  Google Scholar 

  • Aller RC, Aller JY (1998) The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments. J Mar Res 56:905–936

    Article  CAS  Google Scholar 

  • Alongi DM (1985) Microbes, meiofauna, and bacterial productivity on the tubes constructed by the polychaete Capitella capitata. Mar Ecol Prog Ser 23:207–208

    Article  Google Scholar 

  • Andresen M, Kristensen E (2002) The importance of bacteria and microalgae in the diet of the deposit-feeding polychate Arenicola marina. Ophelia 56:179–196

    Article  Google Scholar 

  • Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG, Struhl K, Smith JA (1995) Short protocols in molecular biology. John Wiley and Sons, New York

    Google Scholar 

  • Bird FL, Boon PI, Nichols PD (2000) Physicochemical and microbial properties of burrows of the deposit-feeding Thalassinidean ghost shrimp Biffarius arenosus (Decapoda: Callianassidae). Estuar Coast Shelf Sci 51:279–291

    Article  CAS  Google Scholar 

  • Bower CE, Holm-Hansen T (1980) A salicylate-hypochlorite method for determining ammonia in seawater. Can J Fish Aquat Sci 37:794–798

    Article  CAS  Google Scholar 

  • Christensen B, Vedel A, Kristensen E (2000) Carbon and nitrogen fluxes in sediment inhabited by suspension-feeding (Nereis diversicolor) and non-suspension feeding (N.virens) polychaetes. Mar Ecol Prog Ser 192:203–217

    Article  Google Scholar 

  • Defretin R (1971) The tubes of polychaete Annelids. In: Florkin M, Stotz EH (eds) Comprehensive biochemistry, vol. 26.2, Elsevier, Amsterdam, pp713–747

  • Dobbs FC, Guckert JB (1988) Callianassa trilobata (Crustacea: Thalassinidea) influences abundance of meiofauna and biomass, composition, and physiologic state of microbial communities within its burrow. Mar Ecol Prog Ser 45:69–79

    Article  Google Scholar 

  • Fenchel T (1996) Worm burrows and oxic microniches in marine sediments. I. Spatial and temporal scales. Mar Biol 127:289–295

    Article  Google Scholar 

  • Hall PJO, Aller RC (1992) Rapid, small-volume, flow injection analysis for TCO2 and NH +4 in marine and freshwaters. Limnol Oceanogr 37:1113–1119

    Article  CAS  Google Scholar 

  • Hansen K, Kristensen E (1998) The impact of the polychaete Nereis diversicolor and enrichment with macroalgal (Chaetomorpha linum) detritus on benthic metabolism and nutrient dynamics in organic-poor and organic-rich sediment. J Exp Mar Biol Ecol 231:201–223

    Article  Google Scholar 

  • de Jonge VE (1980) Fluctuations in the organic carbon to chlorophyll a ratios for estuarine benthic diatom populations. Mar Ecol Prog Ser 2:345–353

    Article  Google Scholar 

  • Kristensen E (1988) Factors influencing the distribution of nereid polychaetes in Danish coastal waters. Ophelia Suppl 29:127–140

    Article  Google Scholar 

  • Kristensen E (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426:1–24

    Article  CAS  Google Scholar 

  • Kristensen E, Holmer M (2001) Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2, NO 3 , and SO 2−4 ), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation. Geochim Cosmochim Acta 65:419–433

    Article  CAS  Google Scholar 

  • Kristensen E, Kostka JE (2005) Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions. In: Kristensen E et al (eds) Interactions between macro- and microorganisms in marine sediments. American Geophysical Union, Washington (in press)

    Google Scholar 

  • Kristensen E, Jensen MH, Andersen TK (1985) The impact of polychaete (Nereis virens Sars) burrows on nitrification and nitrate reduction in estuarine sediments. J Exp Mar Biol Ecol 85:75–91

    Article  CAS  Google Scholar 

  • Lucas FS, Bertru G, Höfle MG (2003) Characterization of free-living and attached bacteria in sediments colonized by Hediste diversicolor. Aquat Microb Ecol 32:165–174

    Article  Google Scholar 

  • Mackin JE, Aller RC (1984) Ammonium adsorption in marine sediments. Limnol Oceanogr 29:250–257

    Article  CAS  Google Scholar 

  • Marinelli RL, Lovell CR, Wakeham SG, Ringelberg DB, White DC (2002) Experimental investigation of the control of bacterial community composition in macrofaunal burrows. Mar Ecol Prog Ser 235:1–13

    Article  Google Scholar 

  • Mayer MS, Schaffner L, Kemp WM (1995) Nitrification potentials of benthic macrofaunal tubes and burrow walls: effects of sediment NH +4 and animal irrigation behavior. Mar Ecol Prog Ser 121:157–169

    Article  CAS  Google Scholar 

  • Miller DN (2001) Evaluation of gel filtration resins for the removal of PCR-inhibitory substances from soils and sediments. J Microbiol Meth 44:49–58

    Article  CAS  Google Scholar 

  • Miron G, Kristensen E (1993) Factors influencing the distribution of nereid polychaetes: the sulfide aspect. Mar Ecol Prog Ser 93:143–153

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal E, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rDNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olivier M, Desrosiers G, Caron A, Retière C, Caillou A (1995) Responses comportementales des polychètes Nereis diversicolor (O.F. Müller) et Nereis virens (Sars) aux stimuli d’ordre alimentaire: utilisation de la matière organique particulaire (algues et halophytes). Can J Zool 73:2307–2317

    Article  Google Scholar 

  • Overmann J, Tuschak C (1997) Phylogeny and molecular fingerprinting of green sulfur bacteria. Arch Microbiol 167:302–309

    Article  CAS  Google Scholar 

  • Papaspyrou S, Gregersen T, Cox RP, Thessalou-Legaki M, Kristensen E (2005) Sediment properties and bacterial community in the burrows of the mud shrimp Pestarella tyrrhena (Decapoda: Thalassinidea). Aquat Microb Ecol 38:181–190

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford

    Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Reichardt W (1989) Microbiological aspects of bioturbation. In: Ros JD (ed) Topics in marine biology. Scient Mar 53:301–306

  • Reise K (1981) High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea. Helgol Meeresunters 34:413–425

    Article  Google Scholar 

  • Riisgård HU, Christensen PB, Olesen NJ, Petersen JK, Moller MM, Andersen P (1995) Biological structure in a shallow cove (Kertinge-Nor, Denmark)—Control by benthic nutrient fluxes and suspension-feeding ascidians and jellyfish. Ophelia 41:329–344

    Article  Google Scholar 

  • Schäfer H, Muyzer G (2001) Denaturing gradient gel electrophoresis in marine microbial ecology. Meth Microbiol 30:425–468

    Article  Google Scholar 

  • Sternberg SR (1983) Biomedical image processing. Computer 16:22–34

    Article  Google Scholar 

  • Steward CC, Nold SC, Ringelberg DB, White DC, Lovell CR (1996) Microbial biomass and community structures in the burrows of bromophenol producing and non-producing marine worms and surrounding sediments. Mar Ecol Prog Ser 133:149–165

    Article  Google Scholar 

  • Vedel A, Riisgård HU (1993) Filter-feeding in the polychaete Nereis diversicolor: growth and bioenergetics. Mar Ecol Prog Ser 100:145–152

    Article  Google Scholar 

  • Zola H (1967) Sugar phosphate polymers in polychaete tubes and in mineralized animal tissues. Comp Biochem Physiol 21:179–183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant to EK (Grant#21020463) from the Danish Science Research Council and a traveling grant to SP from The Eleni Nakou Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sokratis Papaspyrou.

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papaspyrou, S., Gregersen, T., Kristensen, E. et al. Microbial reaction rates and bacterial communities in sediment surrounding burrows of two nereidid polychaetes (Nereis diversicolor and N. virens). Marine Biology 148, 541–550 (2006). https://doi.org/10.1007/s00227-005-0105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-005-0105-3

Keywords

Navigation