Skip to main content
Log in

Correlates of bite force in the Atlantic sharpnose shark, Rhizoprionodon terraenovae

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Bite force is a whole-animal performance measurement that can potentially provide valuable information regarding the biology of an organism. However, there have been few studies that directly measured bite force in sharks. We examined involuntary (obtained using jaw musculature stimulation) and voluntary bite force in Atlantic sharpnose sharks, Rhizoprionodon terraenovae, and considered the effects of size, sex, season, gape, and capture method on bite force in that species. Additionally, we considered the relationship between bite force and general head measurements and the position along the jaws used to apply the bite (anterior vs. posterior). We found that there were no significant differences in voluntary or involuntary bite force and no significant differences in bite force between sexes. Atlantic sharpnose sharks, ranging between 55.1 and 105.5 cm total length, had an anterior bite force between 4.4 and 60.2 Newtons (N) and a posterior force between 20.9 and 102.8 N. Anterior bite force was found to be lowest in the summer months and highest in the spring and fall and paralleled seasonal changes in shark condition as evidenced by hepato-somatic index. As gape increased, the anterior bite force increased, with the greatest force found between 60 and 80 % of maximum gape. A best-fit multiple regression using jaw length, mouth width, head length and head width explained 80.9 % of the variation in anterior bite force. Longline-captured Atlantic sharpnose sharks produced significantly lower bite force when compared to hook-and-line-captured animals. Using published data and data from this study, we examined the body size-to-bite force relationship for nine shark species which provided a bite-force estimate of 123,876–179,219 N for the extinct megatooth shark, Carcharodon megalodon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson RA, McBrayer LD, Herrel A (2008) Bite force in vertebrates: opportunities and caveats for use of a nonpareil whole-animal performance measure. Bio J Linn Soc 93(4):709–720

    Article  Google Scholar 

  • Cameron SF, Wynn ML, Wilson RS (2013) Sex-specific trade-offs and compensatory mechanisms: bite force and sprint speed pose conflicting demands on the design of geckos (Hemidactylus frenatus). J Exp Biol 216(20):3781–3789

    Article  CAS  Google Scholar 

  • Chazeau C, Marchal J, Hackert R, Perret M, Herrel A (2012) Proximate determinants of bite force capacity in the mouse lemur. J Zool 290:42–48. doi:10.1111/jzo.12011

    Article  Google Scholar 

  • D’Amore DC, Moreno K, McHenry CR, Wroe S (2011) The effects of biting and pulling on forces generated during feeding in the Komodo dragon (Varanus komodoensis). PLoS One 6(10):e26226

    Article  Google Scholar 

  • Dayan T, Simberloff D, Kawata M (2005) Ecological and community-wide character displacement: the next generation. Ecol Lett 8(8):875–894. doi:10.1111/j.1461-0248.2005.00791.x

    Article  Google Scholar 

  • Dechow PC, Carlson DS (1983) A method of bite-force measurements in primates. J Biomech 16(10):797–802

    Article  CAS  Google Scholar 

  • Dumont ER, Herrel A (2003) The effects of gape angle and bite point on bite force in bats. J Exp Bio 206(13):2117–2123

    Article  Google Scholar 

  • Erickson GM, Gignac PM, Steppan SJ, Lappin AK, Vliet KA, Brueggen JD, Inouye BD, Kledzik D, Webb GJW (2012) Insights into the ecology and evolutionary success of crocodilians revealed through bite-force and tooth-pressure experimentation. PLoS One. doi:10.1371/journal.pone.0031781

    Google Scholar 

  • Ferrara TL, Clausen P, Huber DR, McHenry CR, Peddemors V, Wroe S (2011) Mechanics of biting in great white and sandtiger sharks. J Biomech 44(3):430–435

    Article  CAS  Google Scholar 

  • Freeman PW, Lemen CA (2008) Measuring bite force in small mammals with a piezo-resistive sensor. J Mammal 89(2):513–517

    Article  Google Scholar 

  • Gottfried MD, Compagno LJ, Bowman SC (1996) Size and skeletal anatomy of the giant "megatooth" shark (Carcharodon megalodon). In: Great White Sharks: the biology of Carcharodon carcharias, pp 55–66

  • Groning F, Jones MEH, Curtis N, Herrel A, O’Higgins P, Evans SE, Fagan MJ (2013) The importance of accurate muscle modeling for biomechanical analyses: a case study with a lizard skull. J R Soc Interface 10(84):20130216. doi:10.1098/rsif.2013.0216

    Article  Google Scholar 

  • Grubich JR, Rice AN, Westneat MW (2008) Functional morphology of bite mechanics in the great barracuda (Sphyraena barracuda). Zoology 111(1):16–29

    Article  Google Scholar 

  • Habegger ML, Motta PJ, Huber DR, Dean MN (2012) Feeding biomechanics and theoretical calculations of bite force in bull sharks (Carcharhinus leucas) during ontogeny. Zoology 115(6):354–364

    Article  Google Scholar 

  • Herrel A, Podos J, Huber SK, Hendry AP (2005) Bite performance and morphology in a population of Darwin’s finches: implications for the evolution of beak shape. Funct Ecol 19(1):43–48

    Article  Google Scholar 

  • Hoffmayer ER, Parsons GR (2001) The physiological response to capture and handling stress in the Atlantic sharpnose shark, Rhizoprionodon terraenovae. Fish Physiol Biochem 25(4):277–285

    Article  Google Scholar 

  • Hoffmayer ER, Parsons GR (2003) Food habits of three species from the Mississippi Sound in the northern Gulf of Mexico. Southe Nat 2(2):271–280

    Article  Google Scholar 

  • Hoffmayer ER, Parsons GR, Horton J (2006) Seasonal and interannual variation in the energetic condition of adult male Atlantic sharpnose shark Rhizoprionodon terraenovae in the northern Gulf of Mexico. J Fish Biol 68(2):277–285

    Article  Google Scholar 

  • Hoffmayer ER, Hendon JM, Parsons GR (2012) Seasonal modulation in the secondary stress response of a carcharhinid shark, Rhizoprionodon terraenovae. Comp Biochem Physiol Part A Mol Integr Physiol 162(2):81–87

    Article  CAS  Google Scholar 

  • Huber DR (2006) Cranial biomechanics and feeding performance of sharks. Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/2566

  • Huber DR, Motta PJ (2004) Comparative analysis of methods for determining bite force in the spiny dogfish Squalus acanthias. J Exp Biol Part A Comp Exp Biol 301A(1):26–37

    Article  Google Scholar 

  • Huber DR, Eason TG, Hueter RE, Motta PJ (2005) Analysis of the bite force and mechanical design of the feeding mechanism of the durophagous horn shark (Heterodontus francisci). J Exp Biol 208(1):3553–3571

    Article  Google Scholar 

  • Huber DR, Weggelaar CL, Motta PJ (2006) Scaling of bite force in the blacktip shark Carcharhinus limbatus. Zool 109(2):109–119

    Article  Google Scholar 

  • Huber DR, Dean MN, Summers AP (2008) Hard prey, soft jaws and the ontogeny of feeding mechanics in the spotted ratfish Hydrolagus colliei. J R Soc Interface 5(25):941–953

    Article  Google Scholar 

  • Huber DR, Claes JM, Mallefet J, Herrel A (2009) Is extreme bite performance associated with extreme morphologies in sharks? Physiol Biochem Zool 82(1):20–28

    Article  Google Scholar 

  • Husak JF, Lappin AK, Van Den Bussche RA (2005) The fitness advantage of a high-performance weapon. Biol J Linn Soc 96:840–845

    Article  Google Scholar 

  • Husak JF, Irschick DJ, Meryes JJ, Lailvaux S, More IT (2007) Hormones, sexual signals, and performance of green anole lizards (Anolis carolinensis). Horm Behav 52:360–367

    Article  CAS  Google Scholar 

  • Huyghe K, Husak JF, Moorre IT, Vanhooydonck B, Van Damme R, Molina-Borja M, Herrel A (2010) Effects of testosterone on morphology, performance, and muscle mass in a lizard. J Exp Biol 313A:9–16

    CAS  Google Scholar 

  • Hylander WL, Johnson KR (1993) Modeling relative masseter force from surface electromyograms during mastication in non-human primates. Arch Oral Biol 38(3):233–240

    Article  CAS  Google Scholar 

  • Lappin AK, Husack JF (2005) Weapon performance, not size, determines mating success and potential reproductive output in the collared lizard (Crotaphytus collaris). Am Nat 166:426–436

    Article  Google Scholar 

  • Lappin AK, Jones MEH (2014) Reliable quantification of bite-force performance requires use of appropriate biting substrate and standardization of bite out-lever. J Exp Biol 217(24):4303–4312

    Article  Google Scholar 

  • Lappin AK, Hamilton PS, Sullivan BK (2006) Bite-force performance and head shape in a sexually dimorphic crevice-dwelling lizard, the common chuckwalla [Sauromalus ater (=obesus)]. J Linn Soc 88:215–222

    Article  Google Scholar 

  • Lindstedt SL, Schaeffer PJ (2002) Use of allometry in predicting anatomical and physiological parameters of mammals. Lab Anim 36:1–19

    Article  CAS  Google Scholar 

  • Manns A, Miralles R, Palazzi C (1979) EMG, bite force, and elongation of the masseter muscle under isometric voluntary contractions and variations of vertical dimension. J Prosthet Dent 42(6):674–682

    Article  CAS  Google Scholar 

  • Mara KR, Motta PJ, Huber DR (2009) Bite force and performance in the durophagous bonnethead shark, Sphyrna tiburo. J Exp Zool Part A Ecol Genet Physiol 313(2):95–105

    Google Scholar 

  • Mori A, Vincent SE (2008) An integrative approach to specialization: relationships among feeding morphology, mechanics, behavior, performance and diet in two syntopic snakes. J Zool 275:47–56

    Article  Google Scholar 

  • Nogueira MR, Peracchi AL, Monteiro LR (2009) Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Funct Ecol 23(4):715–723

    Article  Google Scholar 

  • Parsons GR, Hoffmayer ER (2005) Seasonal changes in the distribution and availability of the Atlantic sharpnose shark Rhizoprionodon terraenovae in the north central Gulf of Mexico. Copeia 4:913–919

    Google Scholar 

  • Portell RW, Hubbell G, Donovan SK, Green JL, Harper DAT, Pickerill R (2008) Miocene sharks in the Kendeace and Grand Bay formations of Carriacou, The Grenadines, Lesser Antilles. Caribb J Sci 44:279–286

    Article  Google Scholar 

  • Raadsheer MC, Van Eijden TMGJ, Van Ginkel FC, Prahl-Anderson B (1999) Contribution of jaw muscle size and craniofacial morphology to human bite-force magnitude. J Dent Res 78(1):31–42

    Article  CAS  Google Scholar 

  • Sakamoto M, Lloyd GT, Benton MJ (2010) Phylogenetically structured variance in felid bite force: the role of phylogeny in the evolution of biting performance. J Evol Biol 23:463–478

    Article  CAS  Google Scholar 

  • Thomason JJ (1991) Cranial strength in relation to estimated biting forces in some mammals. Can J Zool 69:2326–2333

    Article  Google Scholar 

  • Thomason JJ, Russell AP, Morgeli M (1990) Forces of biting, body size and masticatory muscle tension in the opossum Didelphis virginiana. Can J Zool 68:318–324

    Article  Google Scholar 

  • Wilga CD, Motta PJ, Sanford CP (2007) Evolution and ecology of feeding in elasmobranchs. Integr Comp Biol 47:55–69

    Article  Google Scholar 

  • Williams SH, Peiffer E, Ford S (2009) Gape and bite force in rodents Onychomys leucogaster and Peromyscus maniculatus: does jaw muscle anatomy predict performance? J Morphol 270(11):1338–1347

    Article  Google Scholar 

  • Wroe S, McHenry C, Thomason J (2005) Bite club: comparative bite force in big biting mammals and the prediction of predatory behavior in fossil taxa. Proc R Soc B 272:619–625

    Article  Google Scholar 

  • Wroe S, Huber DR, Lowry M, McHenry C, Moreno K, Clausen P, Ferrara TL, Cunningham E, Dean MN, Summers AP (2008) Three-dimensional computer analysis of white shark jaw mechanics: how hard can a great white bite? J Zool 276(4):336–342

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the assistance of B. Crosby, W. Dale, M. Dalton, A. Fogg, and M. Gaylord. We would also like to thank B. Noonan for providing assistance. This work was conducted under the guidance and direction of the University of Mississippi Institutional Animal Care and Use Committee (IACUC Protocol #12-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn R. Parsons.

Additional information

Responsible Editor: U. Sommer.

Reviewed by M. Jones and undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rice, K.W., Buchholz, R. & Parsons, G.R. Correlates of bite force in the Atlantic sharpnose shark, Rhizoprionodon terraenovae . Mar Biol 163, 38 (2016). https://doi.org/10.1007/s00227-016-2814-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2814-1

Keywords

Navigation