Skip to main content
Log in

Parabolic Raynaud bundles

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let X be an irreducible smooth projective curve defined over the field of complex numbers, \(S=\{p_1, p_2,\ldots,p_n\} \subset X\) a finite set of closed points and N ≥ 2 a fixed integer. For any pair \((r,d)\in {\mathbb N} \times \frac{1}{N} {\mathbb Z}\), there exists a parabolic vector bundle \(R_{r,d,*}\) on X, with parabolic structure over S and all parabolic weights in \(\frac{1}{N} \mathbb Z\), that has the following property: Take any parabolic vector bundle \(E_*\) of rank r on X whose parabolic points are contained in S, all the parabolic weights are in \(\frac{1}{N}\mathbb Z\) and the parabolic degree is d. Then \(E_*\) is parabolically semistable if and only if there is no nonzero parabolic homomorphism from \(R_{r,d,*}\) to \(E_*\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biswas I. (1997). Parabolic bundles as orbifold bundles. Duke Math. J. 88: 305–325

    Article  MATH  MathSciNet  Google Scholar 

  2. Biswas I. (1997). Parabolic ample bundles. Math. Ann. 307: 511–529

    Article  MATH  MathSciNet  Google Scholar 

  3. Biswas I. (2007). A cohomological criterion for semistable parabolic vector bundles on a curve. C. R. Acad. Sci. 345: 325–328

    MATH  Google Scholar 

  4. Faltings G. (1993). Stable G–bundles and projective connections. J. Algebra. Geom. 2: 507–568

    MATH  MathSciNet  Google Scholar 

  5. Grothendieck A. (1957). Sur la classification des fibrés holomorphes sur la sphère de riemann. Amer. J. Math. 79: 121–138

    Article  MATH  MathSciNet  Google Scholar 

  6. Hein G. (1999). Duality construction of moduli spaces. Geom. Dedicata 75: 101–113

    Article  MATH  MathSciNet  Google Scholar 

  7. Hein, G.: Raynaud vector bundles. Preprint. math.AG/0706.3970.

  8. Mehta V.B. and Seshadri C.S. (1980). Moduli of vector bundles on curves with parabolic structure. Math. Ann. 248: 205–239

    Article  MATH  MathSciNet  Google Scholar 

  9. Namba M. (1987). Branched Coverings and Algebraic Functions. Reseach Notes in Mathematics vol. 161. Pitman-Longman, John Wiley

    Google Scholar 

  10. Popa M. (2001). Dimension estimates for Hilbert schemes and effective base point freeness on moduli spaces of vector bundles on curves. Duke Math. J. 107: 469–495

    Article  MATH  MathSciNet  Google Scholar 

  11. Raynaud M. (1982). Section des fibrés vectoriels sur une courbe. Bull. Soc. math. Fr. 110: 103–125

    MATH  MathSciNet  Google Scholar 

  12. Yokogawa K. (1995). Infinitesimal deformations of parabolic Higgs sheaves. Int. J. Math. 6: 125–148

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Biswas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, I., Hein, G. Parabolic Raynaud bundles. manuscripta math. 126, 247–253 (2008). https://doi.org/10.1007/s00229-008-0178-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-008-0178-7

Mathematics Subject Classification (2000)

Navigation