Skip to main content
Log in

Effects of nanoparticles deposition on thermal behaviour of boiling nanofluids

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Recently, nanofluids are employed as the new generation of coolants specifically in boiling-mode cooling systems. In the present study, the convection heat transfer of boiling nanofluids through micro/minichannels is analytically investigated. Effects of nanoparticles deposition on heat transfer and fluid flow behavior of boiling nanofluids are comprehensively discussed. Nanoparticles deposition during flow boiling is found to cause different effects due to corresponding thermal conductivities. The proposed model validation was found to be in a good accordance with the results of previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Fang X, Zhou Z, Li D (2013) Review of correlations of flow boiling heat transfer coefficients for carbon dioxide. Int J Refrig 36(8):2017–2039

    Article  Google Scholar 

  2. Zhang H, Mudawar I, Hasan MM (2009) Application of flow boiling for thermal management of electronics in microgravity and reduced-gravity space systems. IEEE Trans Compon Packag Technol 32(2):466–477

    Article  Google Scholar 

  3. Peng H, Ding G, Jiang W, Hu H, Gao Y (2009) Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. Int J Refrig 32(6):1259–1270

    Article  Google Scholar 

  4. Lee S-W, Park S-D, Kang S-R, Kim S-M, Seo H, Lee D-W, Bang I-C (2012) Critical heat flux enhancement in flow boiling of Al 2 O 3 and SiC nanofluids under low pressure and low flow conditions. Nucl Eng Technol 44(4):429–436

    Article  Google Scholar 

  5. Chehade AA, Gualous HL, Le Masson S, Fardoun F, Besq A (2013) Boiling local heat transfer enhancement in minichannels using nanofluids. Nanoscale Res Lett 8(1):130

    Article  Google Scholar 

  6. Henderson K, Park Y-G, Liu L, Jacobi AM (2010) Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube. Int J Heat Mass Transf 53(5):944–951

    Article  Google Scholar 

  7. Baqeri S, Akhavan-Behabadi M, Ghadimi B (2014) Experimental investigation of the forced convective boiling heat transfer of R-600a/oil/nanoparticle. Int Commun Heat Mass Transfer 55:71–76

    Article  Google Scholar 

  8. Sarafraz M, Hormozi F (2014) Scale formation and subcooled flow boiling heat transfer of CuO–water nanofluid inside the vertical annulus. Exp Thermal Fluid Sci 52:205–214

    Article  Google Scholar 

  9. Kim SJ, McKrell T, Buongiorno J, Hu L-w (2010) Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure. Nucl Eng Des 240(5):1186–1194

    Article  Google Scholar 

  10. Rana K, Rajvanshi A, Agrawal G (2013) A visualization study of flow boiling heat transfer with nanofluids. J Vis 16(2):133–143

    Article  Google Scholar 

  11. Vafaei S, Wen D (2011) Flow boiling heat transfer of alumina nanofluids in single microchannels and the roles of nanoparticles. J Nanopart Res 13(3):1063–1073

    Article  Google Scholar 

  12. Kim TI, Jeong YH, Chang SH (2010) An experimental study on CHF enhancement in flow boiling using Al 2 O 3 nano-fluid. Int J Heat Mass Transf 53(5):1015–1022

    Article  Google Scholar 

  13. Lee SW, Kim KM, Bang IC (2013) Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid. Int J Heat Mass Transf 65:348–356

    Article  Google Scholar 

  14. Abedini E, Behzadmehr A, Sarvari S, Mansouri S (2013) Numerical investigation of subcooled flow boiling of a nanofluid. Int J Therm Sci 64:232–239

    Article  Google Scholar 

  15. Valizadeh Z, Shams M (2016) Numerical investigation of water-based nanofluid subcooled flow boiling by three-phase Euler–Euler, Euler–Lagrange approach. Heat Mass Transf 52(8):1501–1514

    Article  Google Scholar 

  16. Baniamerian Z, Mehdipour R, Aghanajafi C (2012) Analytical simulation of annular two-phase flow considering the four involved mass transfers. J Fluids Eng 134(8):081301

    Article  Google Scholar 

  17. Deng H, Fernandino M, Dorao CA (2015) Modeling of annular-mist flow during mixtures boiling. Appl Therm Eng 91:463–470

    Article  Google Scholar 

  18. Qu W, Mudawar I (2003) Flow boiling heat transfer in two-phase micro-channel heat sinks––II. Annular two-phase flow model. Int J Heat Mass Transf 46(15):2773–2784

    Article  Google Scholar 

  19. Baniamerian Z, Mashayekhi M (2017) Experimental assessment of saturation behavior of boiling nanofluids: pressure and temperature. J Thermophys Heat Transf 31:732–738

    Article  Google Scholar 

  20. Baniamerian Z, Mashayekhi M (2017) Evaporative behavior of gold-based hybrid nanofluids. J Thermophys Heat Transf. https://doi.org/10.2514/1.T5220

  21. Kreith F, Boehm RF (1999) Heat and mass transfer mechanical engineering handbook. CRC Press LLC, Boca Raton

    Google Scholar 

  22. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transfer Int J 11(2):151–170

    Article  Google Scholar 

  23. Zhao J-J, Duan Y-Y, Wang X-D, Wang B-X (2011) Effect of nanofluids on thin film evaporation in microchannels. J Nanopart Res 13(10):5033

    Article  Google Scholar 

  24. Shima P, Philip J, Raj B (2009) Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl Phys Lett 94(22):223101

    Article  Google Scholar 

  25. Jang SP, Choi SU (2007) Effects of various parameters on nanofluid thermal conductivity. J Heat Transf 129(5):617–623

    Article  Google Scholar 

  26. Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81(10):6692–6699

    Article  Google Scholar 

  27. Murshed S, Leong K, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47(5):560–568

    Article  Google Scholar 

  28. Darcy H (1856) Les fontaines publiques de la ville de Dijon: exposition et application. Victor Dalmont

  29. Kaviany M (2012) Principles of heat transfer in porous media. Springer Science & Business Media

  30. Taitel Y, Dukler A (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AICHE J 22(1):47–55

    Article  Google Scholar 

  31. Kim S-M, Mudawar I (2014) Theoretical model for local heat transfer coefficient for annular flow boiling in circular mini/micro-channels. Int J Heat Mass Transf 73:731–742

    Article  Google Scholar 

  32. Kumar CS, Suresh S, Praveen A, Kumar MS, Gopi V (2016) Effect of surfactant addition on hydrophilicity of ZnO–Al 2 O 3 composite and enhancement of flow boiling heat transfer. Exp Thermal Fluid Sci 70:325–334

    Article  Google Scholar 

  33. Sarwar MS, Jeong YH, Chang SH (2007) Subcooled flow boiling CHF enhancement with porous surface coatings. Int J Heat Mass Transf 50(17):3649–3657

    Article  Google Scholar 

  34. Stutz B, Morceli CHS, Da Silva MDF, Cioulachtjian S, Bonjour J (2011) Influence of nanoparticle surface coating on pool boiling. Exp Thermal Fluid Sci 35(7):1239–1249

    Article  Google Scholar 

  35. Whalley P, Hutchinson P, Hewitt G (1973) The calculation of critical heat flux in forced convection boiling, vol 7520. AERE

  36. Baniamerian Z, Aghanajafi C (2010) Simulation of entrainment mass transfer in annular two-phase flow using the physical concept. J Mech 26(3):385–392

    Article  Google Scholar 

  37. Schadel S, Leman G, Binder J, Hanratty T (1990) Rates of atomization and deposition in vertical annular flow. Int J Multiphase Flow 16(3):363–374

    Article  MATH  Google Scholar 

  38. Ueda T, Inoue M, Nagatome S (1981) Critical heat flux and droplet entrainment rate in boiling of falling liquid films. Int J Heat Mass Transf 24(7):1257–1266

    Article  Google Scholar 

  39. Shah RK, London AL (2014) Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Academic

  40. Wang Y, Deng K, Liu B, Wu J, Su G (2016) Experimental study on Al2O3/H2O nanofluid flow boiling heat transfer under different pressures. In: ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, pp V001T002A002-V001T002A002

  41. Moreira TA, do Nascimento FJ, Ribatski G, Group HTR (2017) An investigation of the effect of nanoparticle composition and dimension on the heat transfer coefficient during flow boiling of aqueous nanofluids in small diameter channels (1.1 mm). Exp Thermal Fluid Sci 89:72–89

    Article  Google Scholar 

  42. Boudouh M, Gualous HL, De Labachelerie M (2010) Local convective boiling heat transfer and pressure drop of nanofluid in narrow rectangular channels. Appl Therm Eng 30(17):2619–2631

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Baniamerian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimi, H., Baniamerian, Z. Effects of nanoparticles deposition on thermal behaviour of boiling nanofluids. Heat Mass Transfer 55, 105–117 (2019). https://doi.org/10.1007/s00231-018-2353-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2353-z

Navigation