Skip to main content
Log in

Degradation of fluorobenzene and its central metabolites 3-fluorocatechol and 2-fluoromuconate by Burkholderia fungorum FLU100

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A halobenzene-degrading bacterium, Burkholderia fungorum FLU100 (DSM 23736), was isolated due to its outstanding trait to degrade fluorobenzene. Besides fluorobenzene, it utilizes, even in random mixtures, chlorobenzene, bromobenzene, iodobenzene, benzene, and toluene as sole sources of carbon and energy. FLU100 mineralizes mono-halogenated benzenes almost stoichiometrically (according to halide balance); after a lag phase, it also degrades 3-fluorophenol and 3-chlorophenol completely. The FLU100-derived transposon Tn5-mutant FLU100-P14R22 revealed 3-halocatechol to be a central metabolite of this new halobenzene degradation pathway. In FLU100, halocatechols are—as expected—strictly subject to ortho-cleavage of the catechol ring, with meta-cleavage never been observed. The strain is able to completely mineralize 3-fluorocatechol, the principal catecholic metabolite being nearly exclusively formed from fluorobenzene. The temporarily excreted 2-fluoromuconate formed thereof in turn is subsequently metabolized completely. This important finding falsifies the customary opinion of the persistence of 2-fluoromuconate valid up to now. The degradation of 4-fluorocatechol, however, being a very minor intermediate in FLU100, is substantially slower and incomplete and leads to the accumulation of uncharacterized derivatives of muconic acid and muconolactone in the medium. This branch therefore does not seem to be productive. To our knowledge, this represents the first example of the complete metabolism of 3-fluorocatechol via 2-fluoromuconate, a metabolite hitherto described as a dead-end metabolite in fluoroaromatic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bartels I, Knackmus HJ, Reineke W (1984) Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505

    CAS  Google Scholar 

  • Beil S, Happe B, Timmis KN, Pieper DH (1997) Genetic and biochemical characterization of the broad spectrum chlorobenzene dioxygenase from Burkholderia sp. strain PS12—dechlorination of 1,2,4,5-tetrachlorobenzene. Eur J Biochem 247:190–199

    Article  CAS  Google Scholar 

  • Broderick JB, O’Halloran TV (1991) Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochem J 30:7349–7358

    Article  CAS  Google Scholar 

  • Carvalho MF, Alves CCT, Ferreira MIM, De Marco P, Castro PML (2002) Isolation and initial characterization of a bacterial consortium able to mineralize fluorobenzene. Appl Environ Microbiol 68:102–105

    Article  CAS  Google Scholar 

  • Carvalho MF, Ferreira Jorge R, Pacheco CC, De Marco P, Castro PML (2005) Isolation and properties of a pure bacterial strain capable of fluorobenzene degradation as sole carbon and energy source. Environ Microbiol 7:294–298

    Article  CAS  Google Scholar 

  • Carvalho MF, Ferreira Jorge R, Pacheco CC, De Marco P, Henriques IS Correia A, Castro PML (2006) Long-term performance and microbial dynamics of an up-flow fixed bed reactor established for the biodegradation of fluorobenzene. Appl Microbiol Biotechnol 71:555–562

    Article  CAS  Google Scholar 

  • Carvalho MF, De Marco P, Duque AF, Pacheco CC, Janssen DB, Castro PML (2008) Labrys portucalensis sp nov., a fluorobenzene-degrading bacterium isolated from an industrially contaminated sediment in northern Portugal. Int J Syst Evol Microbiol 58:692–698

    Article  CAS  Google Scholar 

  • Dorn E, Knackmuss HJ (1978) Chemical structure and biodegradability of halogenated aromatic compounds—substituent effects on 1,2-dioxygenation of catechol. J Biochem 174:85–94

    CAS  Google Scholar 

  • Engesser KH, Schulte P (1989) Degradation of 2-bromobenzoate, 2-chlorobenzoate and 2-fluorobenzoate by Pseudomonas putida CLB 250. FEMS Microbiol Lett 60:143–148

    Article  CAS  Google Scholar 

  • Engesser KH, Schmidt E, Knackmuss HJ (1980) Adaptation of Alcaligenes eutrophus B9 and Pseudomonas sp. B-13 to 2-fluorobenzoate as growth substrate. Appl Microbiol Biotechnol 39:68–73

    CAS  Google Scholar 

  • Engesser KH, Auling G, Busse J, Knackmuss HJ (1990) 3-Fluorobenzoate enriched bacterial strain FLB 300 degrades benzoate and all 3 isomeric monofluorobenzoates. Arch Microbiol 153:193–199

    Article  CAS  Google Scholar 

  • Fogel MM, Taddeo AR, Fogel S (1986) Biodegradation of chlorinates ethenes by a methane-utilizing mixed culture. Appl Environ Microbiol 51:720–724

    CAS  Google Scholar 

  • Harper DB, Blakley ER (1971) The metabolism of p-fluorobenzoic acid by a Pseudomonas sp. Can J Microbiol 17:1015–1023

    Article  CAS  Google Scholar 

  • Kaschabek SR, Reineke W (1992) Maleylacetate reductase of Pseudomonas sp. strain B13: dechlorination of chloromaleylacetates, metabolites in the degradation of chloroaromatic compounds. Arch Microbiol 158:412–417

    Article  CAS  Google Scholar 

  • Kaschabek SR, Kasberg T, Muller D, Mars AE, Jannsen DB, Reinecke W (1998) Degradation of chloroaromatics: purification and characterization of a novel type of chlorocatechol 2,3-dioxygenase of Pseudomonas putida GJ31. J Bacteriol 180:296–302

    CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Mars AE, Kasberg T, van Agteren MH, Jannsen DB, Reinecke W (1997) Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. J Bacteriol 179:4530–4537

    CAS  Google Scholar 

  • Onaca C, Kieninger M, Engesser KH, Altenbuchner J (2007) Degradation of alkyl methyl ketones by Pseudomonas veronii MEK700. J Bacteriol 189:3759–3767

    Article  CAS  Google Scholar 

  • Pfennig N, Lippert KD (1966) Über das vitamin B12—Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256

    Article  CAS  Google Scholar 

  • Raschke H, Fleischmann T, van der Meer JR, Kohler HPE (1999) cis-Chlorobenzene dihydrodiol dehydrogenase (TcbB) from Pseudomonas sp. strain P51, expressed in Escherichia coli DH5(pTCB149), catalyzes enantioselective dehydrogenase reactions. Appl Environ Microbiol 65:5242–5246

    CAS  Google Scholar 

  • Reineke W, Knackmuss HJ (1984) Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl Environ Microbiol 47:395–402

    CAS  Google Scholar 

  • Sala-Trepat JM, Evans WC (1971) The meta cleavage of catechol by Azotobacter species (4-oxalocrotonate pathway). Eur J Biochem 20:400–413

    Article  CAS  Google Scholar 

  • Schlömann M (1994) Evolution of chlorocatechol catabolic pathways. Biodegradation 5:301–321

    Article  Google Scholar 

  • Schlömann M, Fischer P, Schmidt E, Knackmuss HJ (1990a) Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate. J Bacteriol 172:5119–5129

    Google Scholar 

  • Schlömann M, Schmidt E, Knackmuss HJ (1990b) Different types of dienelactone hydrolase in 4-fluorobenzoate utilizing bacteria. J Bacteriol 172:5112–5118

    Google Scholar 

  • Schmidt E, Knackmus KH (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. J Biochem 192:339–347

    CAS  Google Scholar 

  • Schmidt E, Knackmuss KH (1984) Production of cis,cis-muconate from benzoate and 2-fluoro-cis,cis-muconate from 3-fluorobenzoate by 3-chlorobenzoate degrading bacteria. Appl Microbiol Biotechnol 20:351–355

    Article  CAS  Google Scholar 

  • Schreiber A, Hellwig M, Dorn E, Reineke W, Knackmuss KH (1980) Critical reactions in fluorobenzoic acid degradation by Pseudomonas sp. B13. Appl Environ Microbiol 39:58–67

    CAS  Google Scholar 

  • Solyanikova IP, Moiseeva OV, Boeren S, Boersma MG, Kolomytseva MP, Vervoort J, Rietjens IMCM, Golovleva LA, van Berkel WJH (2003) Conversion of 2-fluoromuconate to cis-dienelactone by purified enzymes of Rhodococcus opacus 1cp. Appl Environ Microbiol 69:5636–5642

    Article  CAS  Google Scholar 

  • Strunk N (2008) The degradation of fluorobenzene by Burkholderia fungorum FLU100. Dissertation, University of Stuttgart, Germany. http://elib.uni-stuttgart.de/opus/volltexte/2008/3640/pdf/Dissertation_Niko_Strunk.pdf

  • Tiedje JM, Duxbury JM, Alexander M, Dawson JE (1969) 2,4-D metabolism: pathway of degradation of chlorocatechols by Arthrobacter sp. J Agric Food Chem 17:1021–1026

    Article  CAS  Google Scholar 

  • Werlen C, Kohler HPE, van der Meer JR (1996) The broad substrate chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation. J Biol Chem 271:4009–4016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We dedicate this paper to Prof. Dr. H.-J. Knackmuss, whose tutoring and friendship for so many years is responsible for one of us having spent his adult scientific life in the microbiology of degradative processes and whose work has inspired both of us. We thank the Deutsche Forschungsgemeinschaft DFG for funding the project “Halo- and Alkylbenzene degrading Bacteria—their characterization and use in environmental protection processes” (EN 474/2-2). We also thank G. Auling for precious information on the industrial biotrickling filter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niko Strunk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strunk, N., Engesser, KH. Degradation of fluorobenzene and its central metabolites 3-fluorocatechol and 2-fluoromuconate by Burkholderia fungorum FLU100. Appl Microbiol Biotechnol 97, 5605–5614 (2013). https://doi.org/10.1007/s00253-012-4388-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4388-2

Keywords

Navigation