Skip to main content
Log in

Chain stiffness of cellulose tris(phenylcarbamate) in tricresyl phosphate (TCP)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Small-angle X-ray scattering (SAXS) measurements were carried out for two cellulose tris(phenylcarbamate) (CTPC) samples in tricresyl phosphate (TCP) at 25 °C to determine the particle scattering function P(q) and the z-average mean-square radius of gyration \(\left\langle {S^{2} } \right\rangle_{z}\). The obtained data were analyzed in terms of the wormlike chain model to estimate the Kuhn segment length λ −1 (the stiffness parameter, equivalent to twice the persistence length) and the helix pitch (or helix rise) per residue h. The resultant λ −1 and h were 11.5 ± 0.5 and 0.51 nm, respectively. While the latter value (h) is consistent with the previously reported values both for cellulose and cellulose derivatives, appreciably higher chain flexibility was found for CTPC in TCP than that in tetrahydrofuran at 25 °C (19–24 nm). The value is fairly close to that in anisol, cyclohexanol, and benzophenone, assuming an appropriate temperature coefficient. We may thus conclude that CTPC behaves as a semiflexible chain in TCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Burchard W (2008) Light scattering from polysaccharides as soft materials. In: Borsali R, Pecora R (eds) Soft matter characterization. Springer, Dordrecht, pp 463–603. doi:10.1007/978-1-4020-4465-6_9

    Chapter  Google Scholar 

  2. Hearon WM, Hiatt GD, Fordyce CR (1943) Carbamates of cellulose and cellulose acetate. I. Preparation. J Am Chem Soc 65(5):829–833. doi:10.1021/ja01245a020

    Article  CAS  Google Scholar 

  3. Burchard W (1969) Thermodynamic solution properties of 3 polymers exhibiting lower critical solution temperature. Polymer 10(6):467–475. doi:10.1016/0032-3861(69)90055-x

    Article  CAS  Google Scholar 

  4. Burchard W, Husemann E (1961) Eine Vergleichende Strukturanalyse Von Cellulose-Tricarbanilaten Und Amylose-Tricarbanilaten in Losung. Makromol Chem 44:358–387

    Article  Google Scholar 

  5. Burchard W (1965) Uber Die Abweichungen Von Der Idealen Knauelstatistik Bei Amylose- Und Cellulosetricarbanilat in Einem Theta-Losungsmittel. Makromol Chem 88(Oct):11–28

    Article  CAS  Google Scholar 

  6. Shanbhag VP, Ohman J (1968) Macromolecular properties of cellulose tricarbanilate in dilute solutions. 4. Unperturbed dimensions of cellulose tricarbanilate from measurements in theta solvents. Arkiv Kemi 29(2):163

    Google Scholar 

  7. Ohman J (1969) A light scattering study of cellulose tricarbanilate in good solvents. Arkiv Kemi 31(2):125–136

    CAS  Google Scholar 

  8. Janeschitz-Kriegl H, Burchard W (1968) Flow birefringence of short-chain molecules—cellulose tricarbanilates in benzophenone. J Polym Sci A2 6(12PA):1953–1974. doi:10.1002/pol.1968.160061202

    Article  CAS  Google Scholar 

  9. Sutter W, Burchard W (1978) Comparative study of hydrodynamic properties of cellulose and amylose tricarbanilates in dilute solutions—viscosity, sedimentation and diffusion measurements in 1,4-dioxane in molecular-weight range of 500 ≤ M ≤ 5·106. Macromol Chem Chem Phys 179(8):1961–1980

    Article  CAS  Google Scholar 

  10. Daňhelka J, Netopilíak M, Bohdanecký M (1987) Solution properties and chain conformation characteristics of cellulose tricarbanilate. J Polym Sci Part B Polym Phys 25(9):1801–1815. doi:10.1002/polb.1987.090250902

    Article  Google Scholar 

  11. Kasabo F, Kanematsu T, Nakagawa T, Sato T, Teramoto A (2000) Solution properties of cellulose tris(phenyl carbamate). 1. Characterization of the conformation and intermolecular interaction. Macromolecules 33(7):2748–2756. doi:10.1021/Ma991443u

    Article  CAS  Google Scholar 

  12. Yanagisawa M, Isogai A (2005) SEC-MALS-QELS study on the molecular conformation of cellulose in LiCl/amide solutions. Biomacromolecules 6(3):1258–1265. doi:10.1021/bm049386m

    Article  CAS  Google Scholar 

  13. Yanai H, Sato T (2006) Local conformation of the cellulosic chain in solution. Polym J 38(3):226–233. doi:10.1295/polymj.38.226

    Article  CAS  Google Scholar 

  14. Yamakawa H, Yoshizaki T (2016) Helical wormlike chains in polymer solutions, 2nd edn. Springer, Berlin

    Google Scholar 

  15. Nakamura Y, Norisuye T (2012) 2.02—Polymer properties in solutions. In: Krzysztof M, Martin M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 5–32. doi:10.1016/B978-0-444-53349-4.00020-0

    Chapter  Google Scholar 

  16. Norisuye T (1993) Semiflexible polymers in dilute-solution. Prog Polym Sci 18(3):543–584. doi:10.1016/0079-6700(93)90017-7

    Article  CAS  Google Scholar 

  17. Koyama R, Sato T (2002) Thermodynamic properties of toluene solutions of low molecular weight polystyrenes over wide ranges of concentration. Macromolecules 35(6):2235–2242. doi:10.1021/Ma011540z

    Article  CAS  Google Scholar 

  18. Maeda A, Inoue T, Sato T (2013) Dynamic segment size of the cellulose chain in an ionic liquid. Macromolecules 46(17):7118–7124. doi:10.1021/ma4010764

    Article  CAS  Google Scholar 

  19. Jiang XY, Kitamura S, Sato T, Terao K (2017) Chain Dimensions and stiffness of cellulosic and amylosic chains in an ionic liquid: cellulose, amylose, and an amylose carbamate in BmimCl. Macromolecules 50(10):3979–3984. doi:10.1021/acs.macromol.7b00389

    Article  CAS  Google Scholar 

  20. Inoue T, Uematsu T, Osaki K (2002) The significance of the rouse segment: its concentration dependence. Macromolecules 35(3):820–826. doi:10.1021/011037m

    Article  CAS  Google Scholar 

  21. Kratky O, Porod G (1949) Rontgenuntersuchung Geloster Fadenmolekule. Recl Trav Chim Pays Bas 68(12):1106–1122

    Article  CAS  Google Scholar 

  22. Reddy GV, Bohdanecky M (1987) Analysis of the temperature quotient of the intrinsic-viscosity of stiff-chain polymers. Macromolecules 20(6):1393–1396. doi:10.1021/Ma00172a037

    Article  CAS  Google Scholar 

  23. Jiang XY, Ryoki A, Terao K (2017) Dimensional and hydrodynamic properties of cellulose tris (alkylcarbamate)s in solution: side chain dependent conformation in tetrahydrofuran. Polymer 112:152–158. doi:10.1016/j.polymer.2017.02.012

    Article  CAS  Google Scholar 

  24. Ochiai T, Terao K, Nakamura Y, Yoshikawa C, Sato T (2012) Rigid helical conformation of curdlan tris(phenylcarbamate) in solution. Polymer 53(18):3946–3950. doi:10.1016/j.polymer.2012.07.004

    Article  CAS  Google Scholar 

  25. Terao K, Murashima M, Sano Y, Arakawa S, Kitamura S, Norisuye T (2010) Conformational, dimensional, and hydrodynamic properties of amylose tris(n-butylcarbamate) in tetrahydrofuran, methanol, and their mixtures. Macromolecules 43(2):1061–1068. doi:10.1021/Ma902200z

    Article  CAS  Google Scholar 

  26. Sano Y, Terao K, Arakawa S, Ohtoh M, Kitamura S, Norisuye T (2010) Solution properties of amylose tris(n-butylcarbamate). Helical and global conformation in alcohols. Polymer 51(18):4243–4248. doi:10.1016/j.polymer.2010.06.048

    Article  CAS  Google Scholar 

  27. Terao K, Maeda F, Oyamada K, Ochiai T, Kitamura S, Sato T (2012) Side-chain-dependent helical conformation of amylose alkylcarbamates: amylose tris(ethylcarbamate) and amylose tris(n-hexylcarbamate). J Phys Chem B 116(42):12714–12720. doi:10.1021/jp307998t

    Article  CAS  Google Scholar 

  28. Terao K, Fujii T, Tsuda M, Kitamura S, Norisuye T (2009) Solution properties of amylose tris(phenylcarbamate): local conformation and chain stiffness in 1,4-dioxane and 2-ethoxyethanol. Polym J 41(3):201–207. doi:10.1295/polymj.PJ2008233

    Article  CAS  Google Scholar 

  29. Fujii T, Terao K, Tsuda M, Kitamura S, Norisuye T (2009) Solvent-dependent conformation of amylose tris(phenylcarbamate) as deduced from scattering and viscosity data. Biopolymers 91(9):729–736. doi:10.1002/bip.21219

    Article  CAS  Google Scholar 

  30. Tsuda M, Terao K, Nakamura Y, Kita Y, Kitamura S, Sato T (2010) Solution properties of amylose tris(3,5-dimethylphenylcarbamate) and amylose tris(phenylcarbamate): side group and solvent dependent chain stiffness in methyl acetate, 2-butanone, and 4-methyl-2-pentanone. Macromolecules 43(13):5779–5784. doi:10.1021/ma1006528

    Article  CAS  Google Scholar 

  31. Lodge TP, Hermann KC, Landry MR (1986) Coil dimensions of polystyrenes in isorefractive viscous solvents by small-angle neutron-scattering. Macromolecules 19(7):1996–2002. doi:10.1021/Ma00161a036

    Article  CAS  Google Scholar 

  32. Berry GC (1966) Thermodynamic and conformational properties of polystyrene. I. Light-scattering studies on dilute solutions of linear polystyrenes. J Chem Phys 44(12):4550–4564. doi:10.1063/1.1726673

    Article  CAS  Google Scholar 

  33. Jiang XY, Terao K, Chung WJ, Naito M (2015) Chain dimensions and intermolecular interactions of polysilanes bearing alkyl side groups over the UV thermochromic temperature. Polymer 68:221–226. doi:10.1016/j.polymer.2015.05.018

    Article  CAS  Google Scholar 

  34. Nagasaka K, Yoshizaki T, Shimada J, Yamakawa H (1991) More on the scattering function of helical wormlike chains. Macromolecules 24(4):924–931. doi:10.1021/Ma00004a018

    Article  CAS  Google Scholar 

  35. Burchard W, Kajiwara K (1970) The statistics of stiff chain molecules. I. The particle scattering factor. Proc R Soc Lond Ser A 316(1525):185–199. doi:10.1098/rspa.1970.0074

    Article  CAS  Google Scholar 

  36. Nakamura Y, Norisuye T (2004) Scattering function for wormlike chains with finite thickness. J Polym Sci Part B Polym Phys 42(8):1398–1407. doi:10.1002/polb.20026

    Article  CAS  Google Scholar 

  37. Nakamura Y, Norisuye T (2008) Brush-like polymers. In: Borsali R, Pecora R (eds) Soft matter characterization. Springer, Dordrecht, pp 235–286. doi:10.1007/978-1-4020-4465-6_5

    Chapter  Google Scholar 

  38. Benoit H, Doty P (1953) Light scattering from non-gaussian chains. J Phys Chem 57(9):958–963. doi:10.1021/j150510a025

    Article  CAS  Google Scholar 

  39. Konishi T, Yoshizaki T, Saito T, Einaga Y, Yamakawa H (1990) Mean-square radius of gyration of oligostyrenes and polystyrenes in dilute-solutions. Macromolecules 23(1):290–297. doi:10.1021/Ma00203a050

    Article  CAS  Google Scholar 

  40. Norisuye T, Tsuboi A, Teramoto A (1996) Remarks on excluded-volume effects in semiflexible polymer solutions. Polym J 28(4):357–361. doi:10.1295/polymj.28.357

    Article  CAS  Google Scholar 

  41. Norisuye T, Tsuboi A, Sato T, Teramoto A (1997) Solution properties of cellulose tris(3,5-dimethylphenylcarbamate). Macromol Symp 120:65–76. doi:10.1002/masy.19971200109

    Article  CAS  Google Scholar 

  42. Zugenmaier P, Vogt U (1983) Structural investigations on cellulose tricarbanilate: conformation and liquid crystalline behaviour. Macromol Chem 184(8):1749–1760. doi:10.1002/macp.1983.021840818

    Article  CAS  Google Scholar 

  43. Asano N, Kitamura S, Terao K (2013) Local conformation and intermolecular interaction of rigid ring polymers are not always the same as the linear analogue: cyclic amylose tris(phenylcarbamate) in theta solvents. J Phys Chem B 117(32):9576–9583. doi:10.1021/jp406607w

    Article  CAS  Google Scholar 

  44. Terao K, Morihana N, Ichikawa H (2014) Solution SAXS measurements over a wide temperature range to determine the unperturbed chain dimensions of polystyrene and a cyclic amylose derivative. Polym J 46(3):155–159. doi:10.1038/Pj.2013.76

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Noboru Ohta (SPring-8) and Dr. Rintaro Takahashi (Kitakyushu Univ.) for SAXS measurements. The synchrotron radiation experiments were performed at the BL40B2 in SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2014B1087, 2015A1179, 2015B1100, and 2015B1674). This work was partially supported by JSPS KAKENHI Grant No. 25410130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Terao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Sato, T. & Terao, K. Chain stiffness of cellulose tris(phenylcarbamate) in tricresyl phosphate (TCP). Polym. Bull. 75, 1265–1273 (2018). https://doi.org/10.1007/s00289-017-2094-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2094-z

Keywords

Navigation