Skip to main content
Log in

Reduced Dynamics of the Non-holonomic Whipple Bicycle

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Though the bicycle is a familiar object of everyday life, modeling its full nonlinear three-dimensional dynamics in a closed symbolic form is a difficult issue for classical mechanics. In this article, we address this issue without resorting to the usual simplifications on the bicycle kinematics nor its dynamics. To derive this model, we use a general reduction-based approach in the principal fiber bundle of configurations of the three-dimensional bicycle. This includes a geometrically exact model of the contacts between the wheels and the ground, the explicit calculation of the kernel of constraints, along with the dynamics of the system free of any external forces, and its projection onto the kernel of admissible velocities. The approach takes benefits of the intrinsic formulation of geometric mechanics. Along the path toward the final equations, we show that the exact model of the bicycle dynamics requires to cope with a set of non-symmetric constraints with respect to the structural group of its configuration fiber bundle. The final reduced dynamics are simulated on several examples representative of the bicycle. As expected the constraints imposed by the ground contacts, as well as the energy conservation, are satisfied, while the dynamics can be numerically integrated in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Notes

  1. Note that the parameterization of Fig. 2 obeys these conventions.

References

  • Appell, P.: Traité de mécanique rationnelle. Gauthier-Villars et Cie, Paris (1931)

    MATH  Google Scholar 

  • Astrom, K.J., Klein, R.E., Lennartsson, A.: Bicycle dynamics and control: adapted bicycles for education and research. IEEE Control Syst. 25(4), 26–47 (2005)

    Article  MathSciNet  Google Scholar 

  • Aström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, Cambridge (2010)

    Google Scholar 

  • Basu-Mandal, P., Chatterjee, A., Papadopoulos, J.: Hands-free circular motions of a benchmark bicycle. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 463(2084), 1983–2003 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch, A.M.: Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, vol. 24. Springer, New York (2015)

    Book  Google Scholar 

  • Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.M.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136(1), 21–99 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Bourlet, C.: Étude théorique sur la bicyclette. Bull. Soc. Math. Fr. 27, 76–96 (1899)

    Article  MathSciNet  MATH  Google Scholar 

  • Boussinesq, J.: Aperçu sur la théorie de la bicyclette. J. Math. Pures Appl. 5, 117–136 (1899)

    MATH  Google Scholar 

  • Boyer, F., Belkhiri, A.: Reduced locomotion dynamics with passive internal dofs: application to nonholonomic and soft robotics. IEEE Trans. Rob. 30(3), 578–592 (2014)

    Article  Google Scholar 

  • Boyer, F., Belkhiri, A.: Erratum to “Reduced locomotion dynamics with passive internal dofs: application to nonholonomic and soft robotics” [Jun 14 578–592]. IEEE Trans. Rob. 31(3), 805–805 (2015)

    Article  Google Scholar 

  • Boyer, F., Porez, M.: Multibody system dynamics for bio-inspired locomotion: from geometric structures to computational aspects. Bioinspir. Biomim. 10(2), 1–21 (2015)

    Article  Google Scholar 

  • Boyer, F., Primault, D.: The Poincaré–Chetayev equations and flexible multibody systems. J. Appl. Math. Mech. 69(6), 925–942 (2005). http://hal.archives-ouvertes.fr/hal-00672477

  • Campion, G., Bastin, G., D’Andréa-Novel, B.: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans. Robot. Autom. 12(1), 47–62 (1996)

    Article  Google Scholar 

  • Carvallo, E.: Théorie du movement du monocycle part 2: Théorie de la bicyclette. J. l’École Polytech. 6, 1–118 (1901)

    Google Scholar 

  • Cendra, H., Marsden, J.E., Ratiu, T.S.: Geometric mechanics, lagrangian reduction, and nonholonomic systems. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited—2001 and Beyond, pp. 221–273. Springer, Beriln (2001)

  • Chaplygin, S.: On the theory of motion of nonholonomic systems. The reducing-multiplier theorem. Regul. Chaotic Dyn. 13(4), 369–376 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Chitta, S., Cheng, P., Frazzoli, E., Kumar, V.: Robotrikke: a novel undulatory locomotion system. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA), pp. 1597–1602 (2005)

  • Consolini, L., Maggiore, M.: Control of a bicycle using virtual holonomic constraints. Automatica 49(9), 2831–2839 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  • Franke, G., Suhr, W., Riess, F.: An advanced model of bicycle dynamics. Eur. J. Phys. 11(2), 116–121 (1990)

    Article  MathSciNet  Google Scholar 

  • Getz, N.H., Marsden, J.E.: Control for an autonomous bicycle. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1397–1402 (1995)

  • Hertz, H.: Die Prinzipen der Mechanik in neuem Zusammenhange dargestellt. Gesamelte Werke, Band III. Leipzig (1894)

  • Jones, A.T.: Physics and bicycles. Am. J. Phys. 10(6), 332–333 (1942)

    Article  Google Scholar 

  • Kelly, S.D., Murray, R.M.: Geometric phases and robotic locomotion. J. Robot. Syst. 12(6), 417–431 (1995)

    Article  MATH  Google Scholar 

  • Klein, F., Sommerfeld, A.: Über die theorie des kreisels. Über die Theorie des Kreisels, by Klein, Felix; Sommerfeld, Arnold. New York: Johnson Reprint Corp., 1965. Bibliotheca mathematica Teubneriana; Bd. 1 4 (1965)

  • Kooijman, J.D.G., Meijaard, J.P., Papadopoulos, J.M., Ruina, A., Schwab, A.L.: A bicycle can be self-stable without gyroscopic or caster effects. Science 332(6027), 339–342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Le Hénaff, Y.: Dynamical stability of the bicycle. Eur. J. Phys. 8(3), 207–210 (1987)

    Article  Google Scholar 

  • Letov, A.: Stability of an automatically controlled bicycle moving on a horizontal plane. J. Appl. Math. Mech. 23(4), 934–942 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Lobry, C., Sari, T.: Singular perturbation methods in control theory. Contrle Non Linaire et Applications. Cours du CIMPA, Collection Travaux en Cours, pp. 155–182. Hermann, Paris (2005)

  • Meijaard, J., Papadopoulos, J.M., Ruina, A., Schwab, A.: Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 463(2084), 1955–1982 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Morin, P., Samson, C.: Control of nonholonomic mobile robots based on the transverse function approach. IEEE Trans. Robot. 25(5), 1058–1073 (2009)

    Article  Google Scholar 

  • Ostrowski, J., Burdick, J.: The geometric mechanics of undulatory robotic locomotion. Int. J. Robot. Res. (IJRR) 17(7), 683–701 (1998)

    Article  Google Scholar 

  • Ostrowski, J., Burdick, J., Lewis, A.D., Murray, R.M.: The mechanics of undulatory locomotion: the mixed kinematic and dynamic case. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 1945–1951 (1995)

  • Ostrowski, J., Lewis, A., Murray, R., Burdick, J.: Nonholonomic mechanics and locomotion: the snakeboard example. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation (ICRA), vol. 3, pp. 2391–2397 (1994)

  • Ostrowski, J.P.: Computing reduced equations for robotic systems with constraints and symmetries. IEEE Trans. Robot. Autom. 15(1), 111–123 (1999)

    Article  Google Scholar 

  • Psiaki, M.: Bicycle stability: a mathematical and numerical analysis. Undergradute thesis. Physics Dept., Princeton University, Princeton (1979)

  • Rankine, W.J.M.: On the dynamical principles of the motion of velocipedes. The Engineer 28(79), 129 (1869)

    Google Scholar 

  • Timoshenko, S.P., Young, D.H.: Advanced Dynamics. McGraw-Hill, London (1948)

    MATH  Google Scholar 

  • Whipple, F.J.: The stability of the motion of a bicycle. Quarterly Journal of Pure and Applied Mathematics 30(120), 312–348 (1899)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Mauny.

Additional information

Communicated by Anthony Bloch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 26277 KB)

Appendices

Appendix 1: Calculation of the Kernel of Constraints

In this appendix, we calculate \(H = \ker (A,B)\) by inverting symbolically the system that we rewrite in the form \(D=(A,B)(\eta ^\mathrm{T},\dot{r}^\mathrm{T})^\mathrm{T}=0_6\) where D is the \(6\times 1\) vector whose components \(D_i\), \(i=1,2\ldots 6\), form the left-hand side of (3843). Firstly, \(V_1\), \(V_2\) and \(V_3\) can be extracted from \(D_4\), \(D_5\) and \(D_6\), respectively, as follows:

$$\begin{aligned}&V_1 = F_{16} {{\varOmega }_{3}} + F_{19} \dot{r_3} , \end{aligned}$$
(77)
$$\begin{aligned}&V_2 = F_{26} {{\varOmega }_{3}} + F_{29} \dot{r_3} , \end{aligned}$$
(78)
$$\begin{aligned}&V_3 = F_{34} {{\varOmega }_{1}} + F_{35} {{\varOmega }_{2}} , \end{aligned}$$
(79)

where we introduced the notations:

$$\begin{aligned}&F_{16} = -A_{46} ,\quad F_{19} = -B_{43} , \end{aligned}$$
(80)
$$\begin{aligned}&F_{26} = -A_{56} ,\quad F_{29} = -B_{53} , \end{aligned}$$
(81)
$$\begin{aligned}&F_{34} = -A_{64} ,\quad F_{35} = -A_{65} . \end{aligned}$$
(82)

After inserting (79) in \(D_3\), one can express \(\varOmega _1\) as:

$$\begin{aligned} \varOmega _1 = F_{45} \varOmega _2 + F_{47} \dot{r_1} + F_{48} \dot{r_2} , \end{aligned}$$
(83)

with:

$$\begin{aligned} F_{45} = -\frac{A_{35} + F_{35}}{F_{34} + A_{34}} , F_{47} = -\frac{B_{31}}{F_{34} + A_{34}} , F_{48} = -\frac{B_{32}}{F_{34} + A_{34}} . \end{aligned}$$
(84)

In a similar way, inserting (77) in \(D_1\) gives:

$$\begin{aligned} \dot{r_2} = F_{85} \varOmega _2 + F_{86} \varOmega _3 + F_{87} \dot{r_1} + F_{89} \dot{r_3} , \end{aligned}$$
(85)

with:

$$\begin{aligned} F_{85} = -\frac{A_{15}}{B_{12}} ,\quad F_{86} = -\frac{A_{16} + F_{16}}{B_{12}} ,\quad F_{87} = -\frac{B_{11}}{B_{12}} , \quad F_{89} = -\frac{F_{19}}{B_{12}} . \end{aligned}$$
(86)

Inserting (85), (77) and (83) in \(D_2\) allows rewriting \(\varOmega _3\) as:

$$\begin{aligned} \varOmega _3 = H_{65} \varOmega _2 + H_{67} \dot{r_1} + H_{69} \dot{r_3} , \end{aligned}$$
(87)

with:

$$\begin{aligned}&H_{65} = -\frac{A_{24} F_{45} + ( A_{24} F_{48} + B_{22} ) F_{85}}{( B_{22} + A_{24} F_{48} ) F_{86} + F_{26} + A_{26}} ,\nonumber \\&H_{67} = -\frac{B_{21} + A_{24} F_{47} + ( A_{24} F_{48} + B_{22} ) F_{87}}{( B_{22} + A_{24} F_{48} ) F_{86} + F_{26} + A_{26}} , \end{aligned}$$
(88)
$$\begin{aligned}&H_{69} = -\frac{F_{29} + ( A_{24} F_{48} + B_{22} ) F_{89}}{( B_{22} + A_{24} F_{48} ) F_{86} + F_{26} + A_{26}} . \end{aligned}$$
(89)

Now, inserting (87) in (77), (78) and (85) allows us to rewrite them in the following form:

$$\begin{aligned}&V_1 = H_{15} \varOmega _2 + H_{17} \dot{r_1} + H_{19} \dot{r_3} , \end{aligned}$$
(90)
$$\begin{aligned}&V_2 = H_{25} \varOmega _2 + H_{27} \dot{r_1} + H_{29} \dot{r_3} , \end{aligned}$$
(91)
$$\begin{aligned}&\dot{r_2} = H_{85} \varOmega _2 + H_{87} \dot{r_1} + H_{89} \dot{r_3} , \end{aligned}$$
(92)

with:

$$\begin{aligned}&H_{15} = F_{16} H_{65} ,\quad H_{15} = F_{16} H_{65} ,\quad H_{19} = F_{16} H_{69} + F_{19} , \end{aligned}$$
(93)
$$\begin{aligned}&H_{25} = F_{26} H_{65} ,\quad H_{27} = F_{26} H_{67} ,\quad H_{29} = F_{26} H_{69} + F_{29} , \end{aligned}$$
(94)
$$\begin{aligned}&H_{85} = F_{86} H_{65} + F_{85} ,\quad H_{87} = F_{86} H_{67} + F_{87} ,\quad H_{89} = F_{86} H_{69} + F_{89} . \qquad \end{aligned}$$
(95)

Then, using (92) in (83) gives:

$$\begin{aligned} \varOmega _1 = H_{45} \varOmega _2 + H_{47} \dot{r_1} + H_{49} \dot{r_3} , \end{aligned}$$
(96)

with:

$$\begin{aligned} H_{45} = F_{48} H_{85} + F_{45} ,\quad H_{47} = F_{48} H_{87} + F_{47} , \quad H_{49} = F_{48} H_{89} . \end{aligned}$$
(97)

Finally, inserting (96) into (79), we find:

$$\begin{aligned} V_3 = H_{35} \varOmega _2 + H_{37} \dot{r_1} + H_{39} \dot{r_3} , \end{aligned}$$
(98)

with:

$$\begin{aligned} H_{35} = F_{34} H_{45} + F_{35} ,\quad H_{37} = F_{34} H_{47} , \quad H_{39} = F_{34} H_{49} . \end{aligned}$$
(99)

Finally, any vector in the kernel of the constraints can be written in form (62) which require the ordered calculations of (80)–(82), (84), (86), (88), (89), (93), (94), (95), (97), (99).

Appendix 2: Free Bicycle Dynamics

We first start by calculating the acceleration of the four bodies that compose the bicycle in the configuration space \(SE(3)\times S\). This is done by removing all the accelerations \(\dot{\eta }_j\), for \(j\ne 0\) in the recursion on accelerations (64). After straightforward algebra we find:

$$\begin{aligned}&\dot{\eta _0} = \dot{\eta _0} , \end{aligned}$$
(100)
$$\begin{aligned}&\dot{\eta _1} = {{\mathrm{Ad}}}_{{}^1g_0} \dot{\eta _0} + \ddot{r_1} {{\mathrm{A}}}_1+ \zeta _1 , \end{aligned}$$
(101)
$$\begin{aligned}&\dot{\eta _2} = {{\mathrm{Ad}}}_{{}^2g_0} \dot{\eta _0} + {{\mathrm{Ad}}}_{{}^2g_1} {{\mathrm{A}}}_1\ddot{r_1} + {{\mathrm{A}}}_2 \ddot{r_2}+ {{\mathrm{Ad}}}_{{}^2g_1} \zeta _1 + \zeta _2 , \end{aligned}$$
(102)
$$\begin{aligned}&\dot{\eta _3} = {{\mathrm{Ad}}}_{{}^3g_0} \dot{\eta _0} + {{\mathrm{A}}}_3\ddot{r_3} + \zeta _3 , \end{aligned}$$
(103)

which need to use the detail expressions of the adjoint map and its time derivative:

$$\begin{aligned} {{\mathrm{Ad}}}_{{}^jg_{i}} = \begin{pmatrix} {}^{j}R_{i} &{} {}^{j}R_{i} \,\,\hat{p}_i(O_j)^\mathrm{T}\\ 0 &{} {}^{j}R_{i}\\ \end{pmatrix} , \quad \zeta _j = \begin{pmatrix} ({}^jV_{i} + {}p_{j}(O_i) \times {}^j\varOmega _{i}) \times \dot{r}_{j}a_j\\ \varOmega _{i} \times \dot{r}_j a_j\\ \end{pmatrix} ,\nonumber \\ \end{aligned}$$
(104)

and where \({{\mathrm{A}}}_j = (0_3^\mathrm{T},a_j^\mathrm{T})^\mathrm{T}\) is the \((6 \times 1)\) unit vector supporting the joint axis j. Now writing the top row of (63) with k the indexes of all the bodies just after \(\mathcal {B}_{j}\) when descending the structure from \(\mathcal {B}_0\) to its tips, we have for each of the four bodies of the bicycle:

$$\begin{aligned}&f_3 = \mathcal {M}_3 \dot{\eta _3} + f_{\mathrm{in}, 3} + f_{\mathrm{ext}, 3} , \end{aligned}$$
(105)
$$\begin{aligned}&f_2 = \mathcal {M}_2 \dot{\eta _2} + f_{\mathrm{in}, 2} + f_{\mathrm{ext}, 2} , \end{aligned}$$
(106)
$$\begin{aligned}&f_1 = \mathcal {M}_1 \dot{\eta _1} + f_{\mathrm{in}, 1} + f_{\mathrm{ext}, 1} + {{\mathrm{Ad}}}_{{}^2g_1}^\mathrm{T} f_2 , \end{aligned}$$
(107)
$$\begin{aligned}&f_0 = \mathcal {M}_0 \dot{\eta _0} + f_{\mathrm{in}, 0} + f_{\mathrm{ext}, 0} + {{\mathrm{Ad}}}_{{}^3g_0}^\mathrm{T} f_3 + {{\mathrm{Ad}}}_{{}^1g_0}^\mathrm{T} f_1 , \end{aligned}$$
(108)

which need the detailed expressions:

$$\begin{aligned} \mathcal {M}_{j}= & {} \begin{pmatrix} m_j1_{3\times 3} &{}\quad \hat{ms}_{j}^\mathrm{T}\\ \hat{ms}_{j} &{}\quad I_{j}\\ \end{pmatrix} , \quad f_{\mathrm{in},j} = \begin{pmatrix} (ms_j\times \varOmega _j)\times \varOmega _j + \varOmega _j \times (m_jV_j) \\ \varOmega _{j} \times (I_{j} \varOmega _j) + ms_j\times (\varOmega _j\times V_j) \\ \end{pmatrix},\nonumber \\ \end{aligned}$$
(109)

where \(m_j 1_{3 \times 3}\) and \(I_{j}\) are the matrices of linear and angular inertia, while \(ms_j = m_j p_{j}(G_j)\) is the vector of first inertia moments that couple linear and angular accelerations, all being related to \({\mathcal {B}_j}\). Then, inserting (107), (106), (105), (101), (102) and (103) into (108) that we identify with the first row of (65), we obtain:

$$\begin{aligned} \mathcal {M}= & {} \sum _{i=0}^{3} {{\mathrm{Ad}}}_{{}^ig_0}^\mathrm{T} \mathcal {M}_i {{\mathrm{Ad}}}_{{}^ig_0} , \end{aligned}$$
(110)
$$\begin{aligned} M^\mathrm{T}= & {} \left( \sum _{i=1}^{2} {{\mathrm{Ad}}}_{{}^ig_0}^\mathrm{T} \mathcal {M}_i {{\mathrm{Ad}}}_{{}^ig_1} {{\mathrm{A}}}_1 , {{\mathrm{Ad}}}_{{}^2g_0}^\mathrm{T} \mathcal {M}_2 {{\mathrm{A}}}_2 , {{\mathrm{Ad}}}_{{}^3g_0}^\mathrm{T} \mathcal {M}_3 {{\mathrm{A}}}_3\right) , \end{aligned}$$
(111)
$$\begin{aligned} f_\mathrm{in}= & {} \sum _{i=0}^{3} {{\mathrm{Ad}}}_{{}^ig_0}^\mathrm{T} f_{\mathrm{in}, i} + \sum _{j=1}^{2}(\sum _{i=j}^{2} {{\mathrm{Ad}}}_{{}^ig_0}^\mathrm{T} \mathcal {M}_i {{\mathrm{Ad}}}_{{}^ig_j}) \zeta _j + {{\mathrm{Ad}}}_{{}^3g_0}^\mathrm{T} \mathcal {M}_3 \zeta _3 , \end{aligned}$$
(112)
$$\begin{aligned} f_\mathrm{ext}= & {} \sum _{i=0}^{3} {{\mathrm{Ad}}}_{{}^ig_0}^\mathrm{T} f_{\mathrm{ext}, i} . \end{aligned}$$
(113)

Then introducing (105)–(108) into \(\tau _j = {{\mathrm{A}}}_j^\mathrm{T} f_j\) gives :

$$\begin{aligned}&\tau _1 = {{\mathrm{A}}}_1^\mathrm{T} (\mathcal {M}_1 \dot{\eta _1} + f_{\mathrm{in}, 1} + f_{\mathrm{ext}, 1} + {{\mathrm{Ad}}}_{{}^2g_1}^\mathrm{T} (\mathcal {M}_2 \dot{\eta _2} + f_{\mathrm{in}, 2} + f_{\mathrm{ext}, 2})) , \end{aligned}$$
(114)
$$\begin{aligned}&\tau _2 = {{\mathrm{A}}}_2^\mathrm{T} (\mathcal {M}_2 \dot{\eta _2} + f_{\mathrm{in}, 2} + f_{\mathrm{ext}, 2}) , \end{aligned}$$
(115)
$$\begin{aligned}&\tau _3 = {{\mathrm{A}}}_3^\mathrm{T} (\mathcal {M}_3 \dot{\eta _3} + f_{\mathrm{in}, 3} + f_{\mathrm{ext}, 3}) , \end{aligned}$$
(116)

that once identified with the second row of (65) gives the expressions below:

$$\begin{aligned} m= & {} \begin{pmatrix} \overset{2}{\underset{i=1}{\sum }} {{\mathrm{A}}}_1^T {{\mathrm{Ad}}}_{{}^ig_1}^T \mathcal {M}_i {{\mathrm{Ad}}}_{{}^ig_1} {{\mathrm{A}}}_1 &{} {{\mathrm{A}}}_1^T {{\mathrm{Ad}}}_{{}^2g_1}^T \mathcal {M}_2 {{\mathrm{A}}}_2 &{} 0 \\ {{\mathrm{A}}}_2^T \mathcal {M}_2 {{\mathrm{Ad}}}_{{}^2g_1} {{\mathrm{A}}}_1 &{} {{\mathrm{A}}}_2^T \mathcal {M}_2 {{\mathrm{A}}}_2 &{} 0 \\ 0 &{} 0 &{} {{\mathrm{A}}}_3^T \mathcal {M}_3 {{\mathrm{A}}}_3 \end{pmatrix} ,\nonumber \\ Q_{in}= & {} \begin{pmatrix} \overset{2}{\underset{i=1}{\sum }} {{\mathrm{A}}}_1^T {{\mathrm{Ad}}}_{{}^ig_1}^T f_{in, i} + \overset{2}{\underset{j=1}{\sum }} (\overset{2}{\underset{i=j}{\sum }} {{\mathrm{A}}}_1^T {{\mathrm{Ad}}}_{{}^ig_1}^T \mathcal {M}_i {{\mathrm{Ad}}}_{{}^ig_j}) \zeta _j \\ {{\mathrm{A}}}_2^T f_{in, 2} + \overset{2}{\underset{i=1}{\sum }} {{\mathrm{A}}}_2^T \mathcal {M}_2 {{\mathrm{Ad}}}_{{}^2g_i} \zeta _i \\ {{\mathrm{A}}}_3^T f_{in, 3} + {{\mathrm{A}}}_3^T \mathcal {M}_3 \zeta _3 \end{pmatrix} , \quad Q_{ext} \nonumber \\= & {} \begin{pmatrix} \overset{2}{\underset{i=1}{\sum }} {{\mathrm{A}}}_1^T {{\mathrm{Ad}}}_{{}^ig_1}^T f_{ext, i} \\ {{\mathrm{A}}}_2^T f_{ext, 2} \\ {{\mathrm{A}}}_3^{T} f_{ext, 3} \end{pmatrix} . \end{aligned}$$
(117)

Finally, once supplemented with the recursive geometric model \(^{e}g_{j}=\text {}^{e}g_i\text {}^{i}g_{j}(r_j)\) and kinematic one (63-bottom), the above expressions along with (110113) define all the matrices of the free dynamics, or equivalently, of the left-hand side of (3) and (4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyer, F., Porez, M. & Mauny, J. Reduced Dynamics of the Non-holonomic Whipple Bicycle. J Nonlinear Sci 28, 943–983 (2018). https://doi.org/10.1007/s00332-017-9434-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9434-x

Keywords

Mathematics Subject Classification

Navigation