Skip to main content

Advertisement

Log in

Activation of dopant in silicon by ion implantation under heating sample at 200 °C

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Activation and carrier generation are reported in the case of phosphorus implantation with a dose of 2.0 × 1015 cm−2 at 70 keV to crystalline silicon substrates under heating ranging from 200 to 500 °C. The analysis of the optical reflectivity spectra of implanted surfaces revealed that the effective amorphized thickness was low of 2.9 nm in the case of 200 °C-phosphorus implantation, while it was large of 140 nm for implantation at room temperature. The carrier density par unit area increased from 6.9 × 1013 to 4.8 × 1014 cm−2 and the photo-induced minority carrier effective lifetime increased from 2.2 × 10−6 to 1.6 × 10−4 s as the implantation temperature increased from 200 to 500 °C. Defect reduction with 1.3 MPa H2O vapor heating at 250 °C for 3 h increased the carrier density par unit area of the 200 °C-phosphorus-implanted sample to 2.7 × 1014 cm−2. The rectified characteristics were obtained by current–voltage measurement in the case of phosphorus implantation to p-type silicon substrate. Photovoltaic effect was also observed. These results show that the ion implantation under low temperature heating has a capability of p–n junction formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Mehrotra, J.C. Hu, M. Rodder, Electron Devices Meeting. IEDM’99. Technical Digest. International, 5–8 Dec 1999. https://doi.org/10.1109/IEDM.1999.824183 (1999)

  2. T. Ito, K. Suguro, M. Tamura, T. Taniguchi, Y. Ushiku, T. Iinuma, T. Itani, M. Yoshioka, T. Owada, Y. Imaoka, H. Murayama, T. Kusuda, 2002 Ext. Abstr. Int. Workshop on Junction Technology, p. 23 (2002)

  3. A. Shima, A. Hiraiwa, Jpn. J. Appl. Phys. 45, 5708 (2006)

    Article  ADS  Google Scholar 

  4. K. Goto. T. Yamamoto, T. Kubo, M. Kase, Y. Wang, T. Lin, S. Talwar, T. Sugii, Electron Devices Meeting. IEDM’99. Technical Digest. International, 5–8 Dec 1999. https://doi.org/10.1109/IEDM.1999.824302 (1999)

  5. H. Onoda, Y. Nakashima, T. Nagayama, S. Sakai, Proc. 13th Int. Workshop Junction Technology, p. 66 (2013)

  6. T. Mizuno, T. Nimura, Y. Omata, Y. Nagamine, T. Aoki, T. Sameshima, Jpn. J. Appl. Phys. 56, 04CB03 (2017)

    Article  Google Scholar 

  7. K. Yasuta, M. Hasumi, T. Nagao, Y. Inouchi, T. Sameshima, The 77th JSAP Autumn Meeting, 14a-B7-2 (2016)

  8. J.F. Ziegler, J.M. Manoyan, Nucl. Instrum. Methods B 35, 215 (1988)

    Article  ADS  Google Scholar 

  9. K. Asada, K. Sakamoto, T. Watanabe, T. Sameshima, S. Higashi, Jpn. J. Appl. Phys. 39, 3883 (2000)

    Article  ADS  Google Scholar 

  10. M. Born, E. Wolf, Principles of Optics. (Pergamon, New York, 1974) (Chap. 1 and 13)

    Google Scholar 

  11. K. Ukawa, Y. Kanda, T. Sameshima, N. Sano, M. Naito, N. Hamamoto, Jpn. J. Appl. Phys. 49, 076503 (2010)

    Article  ADS  Google Scholar 

  12. E.D. Palk, Handbook of Optical Constants of Solids (Academic Press, London, 1985), pp. 562–577

    Google Scholar 

  13. J.R. Chelikowsky, M.L. Cohen, Phys. Rev. B 10, 5095 (1974)

    Article  ADS  Google Scholar 

  14. T. Sameshima, H. Hayasaka, T. Haba, Jpn. J. Appl. Phys. 48, 021204 (2009)

    Article  ADS  Google Scholar 

  15. T. Sameshima, T. Motoki, K. Yasuda, T. Nakamura, M. Hasumi, T. Mizuno, Jpn. J. Appl. Phys. 54, 081302 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Sameshima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sameshima, T., Yasuta, K., Hasumi, M. et al. Activation of dopant in silicon by ion implantation under heating sample at 200 °C. Appl. Phys. A 124, 228 (2018). https://doi.org/10.1007/s00339-018-1656-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1656-8

Navigation