Skip to main content
Log in

Tocotrienols in Vellozia gigantea leaves: occurrence and modulation by seasonal and plant size effects

  • Short Communication
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Vitamin E occurs in all photosynthetic organisms examined to date. Tocopherols predominate in photosynthetic tissues (α-tocopherol being the major form), while either tocopherols or tocotrienols (or both) are present in seeds. Tocotrienols have not been described in photosynthetic tissues thus far. Here, we report on the presence of tocotrienols in leaves of higher plants. Both tocopherols and tocotrienols accumulated in leaves of Vellozia gigantea, an endemic plant found in the rupestrian fields of Serra do Cipó, Brazil. Increased plant size had a remarkable effect on the vitamin E composition of leaves, α-tocopherol and β-tocotrienol levels being highest in the largest individuals, but only during the dry season. Vitamin E levels positively correlated with lipid hydroxyperoxide levels, which also increased in the largest individuals during the dry season. However, the maximum efficiency of PSII photochemistry (F v/F m ratio) kept above 0.75 throughout the experiment, thus indicating absence of photoinhibitory damage to the photosynthetic apparatus. It is concluded that higher plants, such as V. gigantea, can accumulate tocotrienols in leaves, aside from tocopherols, and that the levels of both tocopherols and tocotrienols in the leaves of this species are strongly modulated by seasonal and plant size effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

F v/F m ratio:

Maximum efficiency of photosystem II photochemistry

HPLC:

High performance liquid chromatography

LC:

Liquid chromatography

LMA:

Leaf mass per area ratio

MS:

Mass spectrometry

PSII:

Photosystem II

ROS:

Reactive oxygen species

RWC:

Relative water content

References

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21:1082–1087

    Article  CAS  PubMed  Google Scholar 

  • Cela J, Chang C, Munné-Bosch S (2011) Accumulation of γ-rather than α-tocopherol alters ethylene signaling gene expression in the vte4 mutant of Arabidopsis thaliana. Plant Cell Physiol 52:1389–1400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeLong JM, Prange RK, Hodges DM, Forney CF, Bishop MC, Quilliam M (2002) Using a modified ferrous oxidation-xylenol orange (FOX) assay for detection of lipid hydroperoxides in plant tissue. J Agric Food Chem 50:248–254

    Article  CAS  PubMed  Google Scholar 

  • Falk J, Munné-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61:1549–1566

    Article  CAS  PubMed  Google Scholar 

  • Galli F, Azzi A (2010) Present trends in vitamin E research. BioFactors 36:33–42

    CAS  PubMed  Google Scholar 

  • Havaux M, Bonfils J-P, Lütz C, Niyogi KK (2000) Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase. Plant Physiol 124:273–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Havaux M, Eymery F, Porfirova S, Rey P, Dörmann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17:3451–3469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Horvath G, Wessjohann L, Bigirimana J, Jansen M, Guisez Y, Caubergs R, Horemans N (2006) Differential distribution of tocopherols and tocotrienols in photosynthetic and non-photosynthetic tissues. Phytochemistry 67:1185–1195

    Article  CAS  PubMed  Google Scholar 

  • Hussain N, Irshad F, Jabeen Z, Shamsi IH, Li Z, Jiang L (2013) Biosynthesis, structural, and functional attributes of tocopherols in planta: past, present, and future perspectives. J Agric Food Chem 61:6137–6149

    Article  CAS  PubMed  Google Scholar 

  • Lanina AS, Toledo P, Sampels S, Kamal-Eldin A, Jastrebova JA (2007) Comparison of reversed-phase liquid chromatography–mass spectrometry with electrospray and atmospheric pressure chemical ionization for analysis of dietary tocopherols. J Chromatogr 1157:159–170

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    CAS  Google Scholar 

  • Lu Y, Rijzaani H, Karcher D, Ruf S, Bock R (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Natl Acad Sci USA 110:E623–E632

    Article  PubMed Central  PubMed  Google Scholar 

  • Maeda H, Sakuragi Y, Bryant DA, DellaPenna D (2005) Tocopherols protect Synechocystis sp. Strain PCC 6803 from lipid peroxidation. Plant Physiol 138:1422–1435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matringe M, Ksas B, Rey P, Havaux M (2008) Tocotrienols, the unsaturated forms of vitamin E, can function as antioxidants and lipid protectors in tobacco leaves. Plant Physiol 147:764–778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mencuccini M, Grace J (1996) Developmental patterns of above-ground hydraulic conductance in a Scots pine (Pinus sylvestris L.) age sequence. Plant Cell Environ 19:939–948

    Article  Google Scholar 

  • Menezes NL, Giulietti AM (1986) Serra do Cipó—Paraíso dos Botânicos. Ciência Hoje 25:38–44

    Google Scholar 

  • Munné-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748

    Article  PubMed  Google Scholar 

  • Munné-Bosch S, Alegre L (2000) Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210:925–931

    Article  PubMed  Google Scholar 

  • Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57

    Article  Google Scholar 

  • Munné-Bosch S, Lalueza P (2007) Age-related changes in oxidative stress markers and abscisic acid levels in a drought-tolerant shrub, Cistus clusii grown under Mediterranean field conditions. Planta 225:1039–1049

    Article  PubMed  Google Scholar 

  • Munné-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19

    Article  PubMed Central  PubMed  Google Scholar 

  • Padley FB, Gunstone FD, Harwood J (1994) The lipid handbook, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Siles L, Cela J, Munné-Bosch S (2013) Vitamin E analyses in seeds reveal a dominant presence of tocotrienols over tocopherols in the Arecaceae family. Phytochemistry 95:207–214

    Article  CAS  PubMed  Google Scholar 

  • Szymanska R, Kruk J (2008) γ-Tocopherol dominates in young leaves of runner bean (Phaseolus coccineus) under a variety of growing conditions: the possible functions of γ-tocopherol. Phytochemistry 69:2142–2148

    Article  CAS  PubMed  Google Scholar 

  • Tan B, Watson RR, Preedy VR (2012) Tocotrienols: Vitamin E beyond tocopherols, 2nd edn. CRC Press, USA, pp 1–16

    Book  Google Scholar 

  • Trebst A, Depka B, Holländer-Czytko H (2002) A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett 43:2157–2162

    Google Scholar 

  • Van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  PubMed  Google Scholar 

  • Yang W, Cahoon RE, Hunter SC, Zhang C, Han J, Borgschulte T, Cahoon EB (2011) Vitamin E biosynthesis: functional characterization of the monocot homogentisate geranylgeranyltransferase. Plant J 65:206–217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support for the research was received through grants BFU2012-32057, BFU2009-07294, BFU2009-06045 and CSD2008-00040 from the Spanish Government, and the ICREA Academia prize to S.M.-B., which is funded by the Catalan Government. We thank Fábio Vieira for help in preparing Figure 1, and Leilane Barreto, Ana Laura Lamounier Magalhães and Daniela Moreira Duarte for help in samplings. We are also very grateful to Maren Müller for her help with LC–MS/MS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergi Munné-Bosch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, M., Garcia, Q.S., Siqueira-Silva, A.I. et al. Tocotrienols in Vellozia gigantea leaves: occurrence and modulation by seasonal and plant size effects. Planta 240, 437–446 (2014). https://doi.org/10.1007/s00425-014-2104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2104-4

Keywords

Navigation