Skip to main content

Advertisement

Log in

Disentangling the role of TRPM4 in hippocampus-dependent plasticity and learning: an electrophysiological, behavioral and FMRI approach

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Hippocampal long-term potentiation (LTP) has been extensively studied as a cellular model of learning and memory. Recently, we described a central function of the Transient Receptor Potential M4 (TRPM4) channel in hippocampal LTP in mice in vitro. Here, we used Trpm4 knock-out (Trpm4−/−) rats to scrutinize TRPM4’s role in the intact brain in vivo. After having confirmed the previous in vitro findings in mice, we studied hippocampal synaptic plasticity by chronic recordings in freely moving rats, hippocampus-dependent learning by a behavioral battery and hippocampal–cortical connectivity by fMRI. The electrophysiological investigation supports an involvement of TRPM4 in LTP depending on the induction protocol. Moreover, an exhaustive analysis of the LTP kinetics point to mechanistic changes in LTP by trpm4 deletion. General behavior as measured by open field test, light–dark box and elevated plus maze was inconspicuous in Trpm4−/− rats. However, they showed a distinct deficit in spatial working and reference memory associated to the Barnes maze and T-maze test, respectively. In contrast, performance of the Trpm4−/− in the Morris water maze was unaltered. Finally, fMRI investigation of the effects of a strong LTP induction manifested BOLD responses in the ipsilateral and contralateral hippocampus and the prefrontal cortex of both groups. Yet, the initial BOLD response in the stimulated hippocampal area of Trpm4−/− was significantly enhanced compared to WT rats. Our findings at the cellular, behavioral and system level point to a relevant role for TRPM4 in specific types of hippocampal synaptic plasticity and learning but not in hippocampal–prefrontal interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Álvarez-salvado E, Pallarés V, Moreno A, Canals S (2013) Functional MRI of long-term potentiation: imaging network plasticity. Philos Trans R Soc B 369(December 2013):20130152

    Article  Google Scholar 

  • Angenstein F, Kammerer E, Scheich H (2009) The BOLD Response in the Rat Hippocampus Depends Rather on Local Processing of Signals than on the Input or Output Activity. A Combined Functional MRI and Electrophysiological Study. J Neurosci 29(8):2428–2439

    Article  CAS  Google Scholar 

  • Angenstein F, Kammerer E, Niessen HG, Frey JU, Scheich H, Frey S (2007) Frequency-dependent activation pattern in the rat hippocampus, a simultaneous electrophysiological and fMRI study. NeuroImage 38(1):150–163

    Article  Google Scholar 

  • Angenstein F, Krautwald K, Wetzel W, Scheich H (2013) Perforant pathway stimulation as a conditioned stimulus for active avoidance learning triggers BOLD responses in various target regions of the hippocampus: a combined fMRI and electrophysiological study. NeuroImage 75:221–235

    Article  Google Scholar 

  • Ashwood TJ, Lancaster B, Wheal HV (1984) In vivo and in vitro studies on putative interneurones in the rat hippocampus: possible mediators of feed-forward inhibition. Brain Res 293:279–291

    Article  CAS  Google Scholar 

  • Ballesteros JJ, Buschler A, Köhr G, Manahan-Vaughan D (2016) Afferent input selects NMDA receptor subtype to determine the persistency of hippocampal LTP in freely behaving mice. Front Synaptic Neurosci 8(October):1–11

    Google Scholar 

  • Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31

    Article  CAS  Google Scholar 

  • Bliss TVP, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    Article  CAS  Google Scholar 

  • Buzsaki G (1984) Feed-forward inhibition in the hippocampal formation. Prog Neurobiol 22:131–153

    Article  CAS  Google Scholar 

  • Canals S, Beyerlein M, Merkle H, Logothetis NK (2009) Functional MRI evidence for LTP-induced neural network reorganization. Curr Biol 19(5):398–403

    Article  CAS  Google Scholar 

  • Cenquizca LA, Swanson LW (2007) Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res Rev 56(1):1–26

    Article  CAS  Google Scholar 

  • Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33:18–41

    Article  Google Scholar 

  • Dember WN (1989) The search for cues and motives. In: Spontaneous alternation behavior. Springer, New York, pp 19–38

    Chapter  Google Scholar 

  • Dingledine R, Gjerstad L (1980) Reduced inhibition during epileptiform activity in the in vitro hippocampal slice. J Physiol 305:297–313

    Article  CAS  Google Scholar 

  • Earley S, Waldron BJ, Brayden JE (2004) Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 95(9):922–929

    Article  CAS  Google Scholar 

  • Eichenbaum H (2017) Prefrontal–hippocampal interactions in episodic memory. Nat Rev Neurosci (Advance online publication) 18:1–12

    Google Scholar 

  • Freir DB, Herron CE (2003) Inhibition of L-type voltage dependent calcium channels causes impairment of long-term potentiation in the hippocampal CA1 region in vivo. Brain Res 967:27–36

    Article  CAS  Google Scholar 

  • Gonzales AL, Garcia ZI, Amberg GC, Earley S (2010) Pharmacological inhibition of TRPM4 hyperpolarizes vascular smooth muscle. AJP Cell Physiol 299(5):C1195–C1202

    Article  CAS  Google Scholar 

  • Grover LM, Teyler TJ (1990) Two components of long-term potentiation induced by different patterns of afferent activation. Lett Nat 347(4 october):477–479

    Article  CAS  Google Scholar 

  • Harrison FE, Hosseini AH, McDonald MP (2009) Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. Behav Brain Res 198:247–251

    Article  CAS  Google Scholar 

  • Helbing C, Werner G, Angenstein F (2013) Variations in the temporal pattern of perforant pathwaystimulation control the activity in the mesolimbic pathway. NeuroImage 64(1):43–60

    Article  Google Scholar 

  • Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3(6):823–833

    Article  CAS  Google Scholar 

  • Insausti R, Herrero MT, Witter MP (1997) Entorhinal cortex of the rat: Cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus 7(2):146–183

    Article  CAS  Google Scholar 

  • Jin J, Maren S (2015) Prefrontal-hippocampal interactions in memory and emotion. Front Syst Neurosci 9:170

    Article  Google Scholar 

  • Kandel ER, Dudai Y, Mayford MR (2014) The molecular and systems biology of memory. Cell 157(1):163–186

    Article  CAS  Google Scholar 

  • Launay P, Fleig A, Perraud A, Scharenberg AM, Penner R, Kinet J (2002) TRPM4 is a Ca2+-activated nonselective cell membrane depolarization. Cell 109:397–407

    Article  CAS  Google Scholar 

  • Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Neurobiology 86:9574–9578

    CAS  Google Scholar 

  • Liu T, Bai W, Xia M, Tian X (2017) Directional hippocampal-prefrontal interactions during working memory. Behav Brain Res 338:1–8

    Article  Google Scholar 

  • Ljung L (1987) System identification: theory for the user, vol 25. PTR Prentice Hall, Upper Saddle River

    Google Scholar 

  • Longden TA, Hill-Eubanks DC, Nelson MT (2016) Ion channel networks in the control of cerebral blood flow. J Cereb Blood Flow Metab 36(3):492–512

    Article  CAS  Google Scholar 

  • Lüscher C, Malenka RC (2012) NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 4(6):1–15

    Article  Google Scholar 

  • Malenka R, Kauer J, Zucker R, Nicoll R (1988) Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242(4875):81–84

    Article  CAS  Google Scholar 

  • Martin SJ, Shires KL, Spooner PA (2013) The relationship between tetanus intensity and the magnitude of hippocampal long-term potentiation in vivo. Neuroscience 231:363–372

    Article  CAS  Google Scholar 

  • Mcnaughton BL, Douglas RM, Goddard GV (1978) Synaptic enhancement in Fascia Dentata: cooperativity among coactive afferents. Brain Res 157:277–293

    Article  CAS  Google Scholar 

  • Menigoz A, Ahmed T, Sabanov V, Philippaert K, Pinto S, Kerselaers S et al (2015) TRPM4-dependent post-synaptic depolarization is essential for the induction of NMDA receptor-dependent LTP in CA1 hippocampal neurons. Pflügers Archiv Eur J Physiol 468:593–607

    Google Scholar 

  • Morgan SL, Teyler TJ (1999) VDCCs and NMDARs underlie two forms of LTP in CA1 hippocampus in vivo. J Neurophysiol 82:736–740

    Article  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  Google Scholar 

  • Nicoll RA (2017) A brief history of long-term potentiation. Neuron 93(2):281–290

    Article  CAS  Google Scholar 

  • Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12:218

    Article  CAS  Google Scholar 

  • Olton DS, Becker JT, Handelmann GE (1979) Hippocampus, space, and memory. Behav Brain Sci 2(3):313–322

    Article  Google Scholar 

  • Park P, Volianskis A, Sanderson TM, Bortolotto ZA, Jane DE, Zhuo M et al (2014) NMDA receptor-dependent long-term potentiation comprises a family of temporally overlapping forms of synaptic plasticity that are induced by different patterns of stimulation. Philos Trans R Soc B 369:20130131

    Article  Google Scholar 

  • Raymond CR, Redman SJ (2002) Different calcium sources are narrowly tuned to the induction of different forms of LTP. J Neurophysiol 88(1):249–255

    Article  CAS  Google Scholar 

  • Riemann S, Helbing C, Angenstein F (2016) From unspecific to adjusted, how the BOLD response in the rat hippocampus develops during consecutive stimulations. J Cereb Blood Flow Metab 37:1–15

    Google Scholar 

  • Saeidnia S, Manayi A, Abdollahi M (2016) From in vitro experiments to in vivo and clinical studies; pros and cons. Curr Drug Discov Technol 12(4):218–224

    Article  Google Scholar 

  • Scherf T, Angenstein F (2017) Hippocampal CA3 activation alleviates fMRI-BOLD responses in the rat prefrontal cortex induced by electrical VTA stimulation. PLoS One 12(2):e0172926

    Article  Google Scholar 

  • Seidenbecher T, Balschun D, Reymann KG (1995) Drinking after water deprivation prolongs “unsaturated” LTP in the dentate gyms of rats. Physiol Behav 57(5):1001–1004

    Article  CAS  Google Scholar 

  • Straube T, Frey JU (2003) Involvement of β-adrenergic receptors in protein synthesis-dependent late long-term potentiation (LTP) in the dentate gyrus of freely moving rats: the critical role of the LTP induction strength. Neuroscience 119:473–479

    Article  CAS  Google Scholar 

  • Sweatt JD (2010) Mechanisms of memory. In: Sweatt JD (eds) Ch7: long-term potentiation—a candidate cellular mechanism for information storage in the central nervous system. VIII. Long-term potentiation can be divided into phases, 2nd edn. Academic, New York

    Google Scholar 

  • Takeuchi T, Duszkiewicz AJ, Morris RGM (2013) The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc B 369:20130288

    Article  Google Scholar 

  • Tambuyzer T, Ahmed T, Taylor CJ, Berckmans D, Balschun D, Aerts J-M (2013) System identification of mGluR-dependent long-term depression. Neural Comput 25(3):650–670

    Article  Google Scholar 

  • Taylor CJ, Pedregal DJ, Young PC, Tych W (2007) Environmental time series analysis and forecasting with the Captain toolbox. Environ Model Softw 22(6):797–814

    Article  Google Scholar 

  • Valenti O, Grace AA (2009) Entorhinal cortex inhibits medial prefrontal cortex and modulates theactivity states of electrophysiologically characterized pyramidal neurons in vivo. Cerebral Cortex 19(3):658–674

    Article  Google Scholar 

  • Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE et al (2007) Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol 8(3):312–320

    Article  CAS  Google Scholar 

  • Verwer RWH, Meijer RJ, van Uum HFM, Witter MP (1997) Collateral projections from the rat hippocampal formation to the lateral and medial prefrontal cortex. Hippocampus 7:397–402

    Article  CAS  Google Scholar 

  • Volianskis A, France G, Jensen MS, Bortolotto ZA, Jane DE, Collingridge GL (2015) Long-term potentiation and the role of N-methyl-d-aspartate receptors. Brain Res 1621:5–16

    Article  CAS  Google Scholar 

  • Wilsch VW, Behnisch T, Jäger T, Reymann KG, Balschun D (1998) When are class I metabotropic glutamate receptors necessary for long-term potentiation? J Neurosci 18(16):6071–6080

    Article  CAS  Google Scholar 

  • Young P (1984) Recursive estimation and time-series analysis. An introduction. Springer, Berlin

    Book  Google Scholar 

  • Young PC (2011) Recursive estimation and time-series analysis. An introduction for the student and practitioner. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO) Flanderen, project G. 0A14.14N and the KU Leuven onderzoeksfonds (TRP Research Platform Leuven, TRPLe). Special thanks to Adam Raes and Tariq Ahmed for their methodical support and critical input, and to Nele De Ruyck for the help with behavior.

Funding

This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO) Vlaanderen, project G. 0A14.14N and the KU Leuven onderzoeksfonds (TRP Research Platform Leuven, TRPLe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Balschun.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the European Community Council Directive (2010/63/EU) and following the regulations of and approved by the local ethics committee under the number P079/2013 and P143/2012, KU Leuven. This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 597 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bovet-Carmona, M., Menigoz, A., Pinto, S. et al. Disentangling the role of TRPM4 in hippocampus-dependent plasticity and learning: an electrophysiological, behavioral and FMRI approach. Brain Struct Funct 223, 3557–3576 (2018). https://doi.org/10.1007/s00429-018-1706-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1706-1

Keywords

Navigation