Skip to main content

Advertisement

Log in

Hirudins of the Asian medicinal leech, Hirudinaria manillensis: same same, but different

  • Genetics, Evolution, and Phylogeny - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Blood coagulation in vertebrates is a complex mechanism that involves the precisely coordinated and regulated action of a cascade of factors in order to prevent excessive blood loss upon wounding. Any blood sucking ectoparasite, however, has to circumvent this mechanism to ensure the uptake of an adequate blood meal. Inhibitors of blood coagulation in the saliva are hence widespread among these animals. Thrombin as a key factor of blood coagulation is a prominent target of such inhibitors, and hirudin is probably the best known among the thrombin inhibitors. Hirudin was originally described in the genus Hirudo, but occurs in other leech genera like Hirudinaria and Macrobdella as well. Besides several isoforms of hirudin, a new class of putative leech saliva components, the hirudin-like factors (HLFs), was identified in both genera Hirudo and Hirudinaria. Here, we describe the expression, purification, and functional characterization of three HLFs (HLF5, 6, and 8, respectively) and two additional hirudins (HM3 and HM4) of Hirudinaria manillensis. While HLF6 lacked any inhibitory activity on thrombin, HLF5 as well as HLF8 clearly exhibited anticoagulatory properties. The inhibitory activity of HLF5 and HLF8, however, was much lower compared with both HM3 and HM4 of Hirudinaria manillensis as well as the hirudin variants 1 (HV1) and 2 (HV2) of Hirudo medicinalis. Neither an inhibition of trypsin nor a platelet aggregation was caused by HLF8. Our data indicates the presence of two classes (rather than isoforms) of hirudins in Hirudinaria manillensis with markedly different inhibitory activity on human thrombin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bagdy D, Barabas E, Gráf L, Petersen TE, Magnusson S (1976) Hirudin. Methods Enzymol 45:669–678

    Article  CAS  PubMed  Google Scholar 

  • Barnes CS, Krafft B, Frech M, Hofmann UR, Papendieck A, Dahlems U, Gellissen G, Hoylaerts MF (2001) Production and characterization of saratin, an inhibitor of von Willebrand factor-dependent platelet adhesion to collagen. Semin Thromb Hemost 27(4):337–348

    Article  CAS  PubMed  Google Scholar 

  • Baskova IP, Zavalova LL (2001) Proteinase inhibitors from the medicinal leech Hirudo medicinalis. Biochemistry (Mosc) 66(7):703–714

    Article  CAS  Google Scholar 

  • Baskova IP, Zavalova LL, Basanova AV, Moshkovskii SA, Zgoda VG (2004) Protein profiling of the medicinal leech salivary gland secretion by proteomic analytical methods. Biochemistry 69:770–775

    CAS  PubMed  Google Scholar 

  • Baskova IP, Kostrjukova ES, Vlasova MA, Kharitonova OV, Levitskiy SA, Zavalova LL, Moshkovskii SA, Lazarev NV (2008) Proteins and peptides of the salivary gland secretion of medicinal leeches Hirudo verbana, H. medicinalis, and H. orientalis. Biochemistry (Mosc) 73(3):315–320

    Article  CAS  Google Scholar 

  • Betz A, Hofsteenge J, Stone SR (1991) Ionic interactions in the formation of the thrombin-hirudin complex. Biochem J 275(Pt 3):801–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang JY (1983) The functional domain of hirudin, a thrombin-specific inhibitor. FEBS Lett 164(2):307–313

    Article  CAS  PubMed  Google Scholar 

  • Chang JY, Ngai PK, Rink H, Dennis S, Schlaeppi JM (1990) The structural elements of hirudin which bind to the fibrinogen recognition site of thrombin are exclusively located within its acidic C-terminal tail. FEBS Lett 261(2):287–290

    Article  CAS  PubMed  Google Scholar 

  • Connolly TM, Jacobs JW, Condra C (1992) An inhibitor of collagen-stimulated platelet activation from the salivary glands of the Haementeria officinalis leech. I. Identification, isolation, and characterization. J Biol Chem 267(10):6893–6898

    CAS  PubMed  Google Scholar 

  • Corral-Rodríguez MA, Macedo-Ribeiro S, Pereira PJ, Fuentes-Prior P (2010) Leech-derived thrombin inhibitors: from structures to mechanisms to clinical applications. J Med Chem 53(10):3847–3861

    Article  PubMed  CAS  Google Scholar 

  • DiMaio J, Gibbs B, Munn D, Lefebvre J, Ni F, Konishi Y (1990) Bifunctional thrombin inhibitors based on the sequence of hirudin 45-65. J Biol Chem 265(35):21698–21703

    CAS  PubMed  Google Scholar 

  • Dodt J, Müller HP, Seemüller U, Chang JY (1984) The complete amino acid sequence of hirudin, a thrombin specific inhibitor: application of colour carboxymethylation. FEBS Lett 165(2):180–184

    Article  CAS  Google Scholar 

  • Dodt J, Machleidt W, Seemüller U, Maschler R, Fritz H (1986) Isolation and characterization of hirudin isoinhibitors and sequence analysis of hirudin PA. Biol Chem Hoppe Seyler 367(8):803–811

    Article  CAS  PubMed  Google Scholar 

  • Dodt J, Köhler S, Baici A (1988) Interaction of site specific hirudin variants with α-thrombin. FEBS Lett 229(1):87–90

    Article  CAS  PubMed  Google Scholar 

  • Doolittle RF (2009) Step-by-step evolution of vertebrate blood coagulation. Cold Spring Harb Symp Quant Biol 74:35–40

    Article  CAS  PubMed  Google Scholar 

  • Erlanger BF, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  CAS  PubMed  Google Scholar 

  • Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182:319–326

    Article  CAS  PubMed  Google Scholar 

  • Glusa E, Markwardt F (1990) Platelet functions in recombinant Hirudin-anticoagulated blood. Haemostasis 20(2):112–118

    CAS  PubMed  Google Scholar 

  • Gronwald W, Bomke J, Maurer T, Domogalla B, Huber F, Schumann F, Kremer W, Fink F, Rysiok T, Frech M, Kalbitzer HR (2008) Structure of the leech protein saratin and characterization of its binding to collagen. J Mol Biol 381(4):913–927

    Article  CAS  PubMed  Google Scholar 

  • Grütter MG, Priestle JP, Rahuel J, Grossenbacher H, Bode W, Hofsteenge J, Stone SR (1990) Crystal structure of the thrombin-hirudin complex: a novel mode of serine protease inhibition. EMBO J 9(8):2361–2365

    Article  PubMed  PubMed Central  Google Scholar 

  • Harvey RP, Degryse E, Stefani L, Schamber F, Cazenave JP, Courtney M, Tolstoshev P, Lecocq JP (1986) Cloning and expression of a cDNA coding for the anticoagulant hirudin from the bloodsucking leech, Hirudo medicinalis. Proc Natl Acad Sci U S A 83(4):1084–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibsh D, Schori H, Efroni S, Shefi O (2015) De novo transcriptome assembly databases for the central nervous system of the medicinal leech. Sci Data 2:150015. https://doi.org/10.1038/sdata.2015.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt J-P, Lemke S (2011) Small bite, large impact – saliva and salivary molecules in the medicinal leech, Hirudo medicinalis. Naturwissenschaften 98:995–1008

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zhang Y, Zhao B, Xu Q, Zhou X, Song H, Yu M, Mo W (2014) Structural basis of RGD-hirudin binding to thrombin: Tyr3 and five C-terminal residues are crucial for inhibiting thrombin activity. BMC Struct Biol 14:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keim A (1993) Studies on the host specificity of the medicinal blood leech Hirudo medicinalis L. Parasitol Res 79:251–255

    Article  CAS  PubMed  Google Scholar 

  • Keller PM, Schultz LD, Condra C, Karczewski J, Connolly TM (1992) An inhibitor of collagen-stimulated platelet activation from the salivary glands of the Haementeria officinalis leech. II. Cloning of the cDNA and expression. J Biol Chem 267(10):6899–6904

    CAS  PubMed  Google Scholar 

  • Khan MS, Guan DL, Kvist S, Ma LB, Xie JY, Xu SQ (2019) Transcriptomics and differential gene expression in Whitmania pigra (Annelida: Clitellata: Hirudinida: Hirudinidae): contrasting feeding and fasting modes. Ecol Evol 9:4706–4719. https://doi.org/10.1002/ece3.5074

    Article  PubMed  PubMed Central  Google Scholar 

  • Koh CY, Kini RM (2011) Thrombin inhibitors from haematophagous animals. In: Kini RM, Clemetson KJ, Markland FS, McLane MA, Morita T (eds) Toxins and hemostasis. Springer, Heidelberg, pp 239–254

    Google Scholar 

  • Krezel AM, Ulmer JS, Wagner G, Lazarus RA (2000) Recombinant decorsin: dynamics of the RGD recognition site. Protein Sci 9(8):1428–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvist S, Brugler MR, Goh TG, Giribet G, Siddall ME (2014) Pyrosequencing the salivary transcriptome of Haemadipsa interrupta (Annelida: Clitellata: Haemadipsidae): anticoagulant diversity and insight into the evolution of anticoagulation capabilities in leeches. Invert Biol 133(1):74–98

    Article  Google Scholar 

  • Lai YT, Chen JH (2010) Hirudinaria manillensis. In: Leech fauna of Taiwan - Biota Taiwanica. National Taiwan University Press, Taipei, Taiwan, pp 48–53

    Google Scholar 

  • Lai Y, Li B, Liu W, Wang G, Du C, Ombati R, Lai R, Long C, Li H (2016) Purification and characterization of a novel Kazal-type trypsin inhibitor from the leech of Hirudinaria manillensis. Toxins 8(8):E229. https://doi.org/10.3390/toxins8080229

    Article  CAS  PubMed  Google Scholar 

  • Lane DA, Philippou H, Huntington JA (2005) Directing thrombin. Blood 106(8):2605–2612

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Shi P, You H, Liu Y, Chen S (2018) Transcriptomic analysis of the salivary gland of medicinal leech Hirudo nipponia. PLoS One 13(10):e0205875. https://doi.org/10.1371/journal.pone.0205875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macagno ER, Gaasterland T, Edsall L, Bafna V, Soares MB, Scheetz T, Casavant T, Da Silva C, Wincker P, Tasiemski A, Salzet M (2010) Construction of a medicinal leech transcriptome database and its application to the identification of leech homologs of neural and innate immune genes. BMC Genomics 11:407. https://doi.org/10.1186/1471-2164-11-407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markwardt F (1955) Untersuchungen über Hirudin. Springer Naturwissenschaften 42:537–538

    Article  Google Scholar 

  • Markwardt F (1957) Die Isolierung und chemische Charakterisierung des Hirudins. Hoppe Seylers Z Physiol Chem 308(1):147–156

    Article  CAS  PubMed  Google Scholar 

  • Markwardt F (1967) Reindarstellung und Analyse des Thrombininhibitors Hirudin. Hoppe Seylers Z Physiol Chem 348(1):1381–1386

  • Mazur P, Henzel WJ, Seymour JL, Lazarus RA (1991) Ornatins: potent glycoprotein IIb-IIIa antagonists and platelet aggregation inhibitors from the leech Placobdella ornata. Eur J Biochem 202(3):1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Merilä J, Sterner M (2002) Medicinal leeches (Hirudo medicinalis) attacking and killing adult amphibians. Ann Zool Fenn 39:343–346

    Google Scholar 

  • Midtgård U (1980) Blood vessels in the hind limb of the mallard (Anas platyrhynchos): anatomical evidence for a sphincteric action of shunt vessels in connection with the arterio-venous heat exchange system. Acta Zool 61(1):39–49

    Article  Google Scholar 

  • Midtgård U (1981) The Rete tibiotarsale and arteriovenous association in the hind limb of birds: a compartive morphological study on counter-current heat exchange systems. Acta Zool 62(2):67–87

    Article  Google Scholar 

  • Min GS, Sarkar IN, Siddall ME (2010) Salivary transcriptome of the north American medicinal leech, Macrobdella decora. J Parasitol 96(6):1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Mo W, Zhang YL, Chen HS, Wang LS, Song HY (2009) A novel hirudin derivative characterized with anti-platelet aggregations and thrombin inhibition. J Thromb Thrombolysis 28(2):230–237

    Article  CAS  PubMed  Google Scholar 

  • Moser M, Auerswald E, Mentele R, Eckerskorn C, Fritz H, Fink E (1998) Bdellastasin, a serine protease inhibitor of the antistasin family from the medical leech (Hirudo medicinalis)- primary structure, expression in yeast, and characterisation of native and recombinant inhibitor. Eur J Biochem 253(1):212–220

    Article  CAS  PubMed  Google Scholar 

  • Müller C, Mescke K, Liebig S, Mahfoud H, Lemke S, Hildebrandt J-P (2016) More than just one: multiplicity of hirudins and hirudin-like factors in the medicinal leech, Hirudo medicinalis. Mol Gen Genomics 291(1):227–240

    Article  CAS  Google Scholar 

  • Müller C, Haase M, Lemke S, Hildebrandt JP (2017) Hirudins and hirudin-like factors in Hirudinidae: implications for function and phylogenetic relationships. Parasitol Res 116(1):313–325

    Article  PubMed  Google Scholar 

  • Müller C, Lukas P, Lemke S, Hildebrandt JP (2019) Hirudin and decorsins of the North-American medicinal leech Macrobdella decora: gene structure reveals homology to hirudins and hirudin-like factors of Eurasian medicinal leeches. J Parasitol in press

  • Munro R, Jones CP, Sawyer RT (1991) Calin - a platelet adhesion inhibitor from the saliva of the medicinal leech. Blood Coagul Fibrinolysis 2(1):179–184

    Article  CAS  PubMed  Google Scholar 

  • Nurden AT, Poujol C, Durrieu-Jais C, Nurden P (1999) Platelet glycoprotein IIb/IIIa inhibitors: basic and clinical aspects. Arterioscler Thromb Vasc Biol 19(12):2835–2840

    Article  CAS  PubMed  Google Scholar 

  • Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4(11):2411–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen TE, Roberts HR, Sottrup-Jensen L, Magnusson S, Bagdy D (1976) Primary structure of hirudin, a thrombin-specific inhibitor. In: Peeters H (ed) Protides of the biological fluids, proceedings of the twenty-third colloquium Brugge 1975. Pergamon Press, London, pp 145–148

    Google Scholar 

  • Ponczek MB, Bijak MZ, Nowak PZ (2012) Evolution of thrombin and other hemostatic proteases by survey of protochordate, hemichordate, and echinoderm genomes. J Mol Evol 74(5–6):319–331

    Article  CAS  PubMed  Google Scholar 

  • Rigbi M, Orevi M, Eldor A (1996) Platelet aggregation and coagulation inhibitors in leech saliva and their roles in leech therapy. Semin Thromb Hemost 22(3):273–278

    Article  CAS  PubMed  Google Scholar 

  • Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497

    Article  CAS  PubMed  Google Scholar 

  • Rydel TJ, Ravichandran KKG, Tulinsky A, Bode W, Huber R, Roitsch C, Fenton JW (1990) The structure of a complex of recombinant hirudin and human α-thrombin. Science 249(4966):277–280

    Article  CAS  PubMed  Google Scholar 

  • Rydel TJ, Tulinsky A, Bode W, Huber R (1991) Refined structure of the hirudin-thrombin complex. J Mol Biol 221(2):583–601

    Article  CAS  PubMed  Google Scholar 

  • Salzet M (2001) Anticoagulants and inhibitors of platelet aggregation derived from leeches. FEBS Lett 492:187–192

    Article  CAS  PubMed  Google Scholar 

  • Sawyer RT (1986) Leech biology and behaviour. Feeding, biology, ecology and systematics, vol II. Clarendon Press, Oxford

    Google Scholar 

  • Scacheri E, Nitti G, Valsasina B, Orsini G, Visco C, Ferrera M, Sawyer RT, Sarmientos P (1993) Novel hirudin variants from the leech Hirudinaria manillensis. Amino acid sequence, cDNA cloning and genomic organization. Eur J Biochem 214(1):295–304

    Article  CAS  PubMed  Google Scholar 

  • Schmitz T, Rothe M, Dodt J (1991) Mechanism of the inhibition of alpha-thrombin by hirudin-derived fragments hirudin(1-47) and hirudin(45-65). Eur J Biochem 195(1):251–256

    Article  CAS  PubMed  Google Scholar 

  • Seymour JL, Henzel WJ, Nevins B, Stults JT, Lazarus RA (1990) Decorsin. A potent glycoprotein IIb-IIIa antagonist and platelet aggregation inhibitor from the leech Macrobdella decora. J Biol Chem 265(17):10143–10147

    CAS  PubMed  Google Scholar 

  • Sharp KA (1996) Electrostatic interactions in hirudin-thrombin binding. Biophys Chem 61(1):37–49

    Article  CAS  PubMed  Google Scholar 

  • Siddall ME, Brugler MR, Kvist S (2016) Comparative transcriptomic analyses of three species of Placobdella (Rhynchobdellida: Glossiphoniidae) confirms a single origin of blood feeding in leeches. J Parasitol 102(1):143–150

    Article  CAS  PubMed  Google Scholar 

  • Sig AK, Guney M, Guclu AU, Ozmen E (2017) Medicinal leech therapy—an overall perspective. Integr Med Res 6:337–343

    Article  PubMed  PubMed Central  Google Scholar 

  • Söllner C, Mentele R, Eckerskorn C, Fritz H, Sommerhoff CP (1994) Isolation and characterization of hirustasin, an antistasin-type serine-proteinase inhibitor from the medical leech Hirudo medicinalis. Eur J Biochem 219(3):937–943

    Article  PubMed  Google Scholar 

  • Sørensen H, Sørensen S, Bjergegaard C, Michaelsen S (1999) Protein purification and analysis. In: Belton PS (ed) Chromatography and capillary electrophoresis in food analysis: RSC (RSC food analysis monographs), 1st edn. Royal Society of Chemistry, Cambridge, pp 315–373

    Google Scholar 

  • Stone SR, Hofsteenge J (1986) Kinetics of the inhibition of thrombin by hirudin. Biochemistry 25(16):4622–4628

    Article  CAS  PubMed  Google Scholar 

  • Tessler M, Marancik D, Champagne D, Dove A, Camus A, Siddall ME, Kvist S (2018) Marine leech anticoagulant diversity and evolution. J Parasitol 104(3):210–220

    Article  CAS  PubMed  Google Scholar 

  • Vindigni A, De Filippis V, Zanotti G, Visco C, Orsini G, Fontana A (1994) Probing the structure of hirudin from Hirudinaria manillensis by limited proteolysis. Isolation, characterization and thrombin-inhibitory properties of N-terminal fragments. Eur J Biochem 226(2):323–333

    Article  CAS  PubMed  Google Scholar 

  • Walenga JM, Hoppensteadt D, Koza M, Wallock M, Pifarre R, Fareed J (1991) Laboratory assays for the evaluation of recombinant hirudin. Haemostasis 21(Suppl 1):49–63

    CAS  PubMed  Google Scholar 

  • Wallace A, Dennis S, Hofsteenge J, Stone SR (1989) Contribution of the N-terminal region of hirudin to its interaction with thrombin. Biochemistry 28(26):10079–10084

    Article  CAS  PubMed  Google Scholar 

  • Warkentin TE (2004) Bivalent direct thrombin inhibitors: hirudin and bivalirudin. Best Pract Res Clin Haematol 17(1):105–125

    Article  CAS  PubMed  Google Scholar 

  • Wilkin PJ, Scofield AM (1990) The use of a serological technique to examine host selection in a natural population of the medicinal leech, Hirudo medicinalis. Freshw Biol 23(2):165–169

    Article  Google Scholar 

  • Yanes O, Villanueva J, Querol E, Aviles FX (2005) Functional screening of serine protease inhibitors in the medical leech Hirudo medicinalis monitored by intensity fading MALDI-TOF MS. Mol Cell Proteomics 4:1602–1613

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Schmaier AH (2005) Platelet aggregation testing in platelet-rich plasma: description of procedures with the aim to develop standards in the field. Am J Clin Pathol 123(2):172–183

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Detlef Menzel (Futura-Egel-Zucht, Potsdam) for providing the Hirudo specimens and Bethany Sawyer (Biopharm U.K. Ltd., Swansea) for providing the Hirudinaria specimens. We are thankful to Sabine Ziesemer and Amanda Wiesenthal for critical reading of the manuscript and to the reviewers for their constructive and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Müller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

We declare that the experiments described in this paper comply with the current laws in Germany. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures in our studies involving human participants (platelet aggregation experiments) were approved by the local ethics committee and performed according to the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Handling Editor: Julia Walochnik

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukas, P., Wolf, R., Rauch, B.H. et al. Hirudins of the Asian medicinal leech, Hirudinaria manillensis: same same, but different. Parasitol Res 118, 2223–2233 (2019). https://doi.org/10.1007/s00436-019-06365-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-019-06365-z

Keywords

Navigation