Skip to main content

Advertisement

Log in

New stochastic synchronization criteria for fuzzy Markovian hybrid neural networks with random coupling strengths

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper focuses on the stochastic synchronization problem for a class of fuzzy Markovian hybrid neural networks with random coupling strengths and mode-dependent mixed time delays in the mean square. First, a novel free-matrix-based single integral inequality and two novel free-matrix-based double integral inequalities are established. Next, by employing a novel augmented Lyapunov–Krasovskii functional with several mode-dependent matrices, applying the theory of Kronecker product of matrices, Barbalat’s Lemma and the new free-matrix-based integral inequalities, two delay-dependent conditions are established to achieve the globally stochastic synchronization for the mode-dependent fuzzy hybrid coupled neural networks. Finally, two numerical examples with simulation are provided to illustrate the effectiveness of the presented criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arnold L (1972) Stochastic differential equations: theory and applications. Wiley, New York

    Google Scholar 

  2. Bao H, Park JuH, Cao J (2016) Exponential synchronization of coupled stochastic memristor-based neural networks with time-varying probabilistic delay coupling and impulsive delay. IEEE Trans Neural Netw Learn Syst 27(1):190–201

    Article  MathSciNet  Google Scholar 

  3. Chandrasekar A, Rakkiyappan R, Cao J (2015) Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. Neural Netw 70:27–38

    Article  MATH  Google Scholar 

  4. Gan Q, Xu R, Yang P (2012) Synchronization of non-identical chaotic delayed fuzzy cellular neural networks based on sliding mode control. Commun Nonlinear Sci Numer Simul 17(1):433–443

    Article  MathSciNet  MATH  Google Scholar 

  5. Gu K (2000) An integral inequality in the stability problem of time-delay systems. In: Proceedings of the 39th IEEE conference decision and control, Sydney, Australia, pp 2805–2810

  6. Horn RA, Johnson CR (1990) Matrix analysis. Cambridge Univ. Press, Cambridge

    MATH  Google Scholar 

  7. Ji M-D, He Y, Zhang C-K, Wu M (2014) Novel stability criteria for recurrent neural networks with time-varying delay. Neurocomputing 138:383–391

    Article  Google Scholar 

  8. Lee Tae H, Park JuH, Xu S (2017) Relaxed conditions for stability of time-varying delay systems. Automatica 75:11–15

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu Y, Wang Z, Liu X (2006) Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Netw 19(5):667–675

    Article  MATH  Google Scholar 

  10. Liu Z, Zhang H, Wang Z (2009) Novel stability criterions of a new fuzzy cellular neural networks with time-varying delays. Neurocomputing 72:1056–1064

    Article  Google Scholar 

  11. Liu Z, Zhang H, Zhang Q (2010) Novel stability analysis for recurrent neural networks with multiple delays via line integral-type L-K functional. IEEE Trans Neural Netw 21(11):1710–1718

    Article  Google Scholar 

  12. Liu Y, Hu L-S, Shi P (2012) A novel approach on stabilization for linear systems with time-varying input delay. Appl Math Comput 218:5937–5947

    MathSciNet  MATH  Google Scholar 

  13. Liu Y, Wang Z, Liang J, Liu X (2013) Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays. IEEE Trans Cybern 43(1):102–114

    Article  Google Scholar 

  14. Lu R, Yu W, Lü J, Xue A (2014) Synchronization on complex networks of networks. IEEE Trans Neural Netw Learn Syst 25(11):2110–2118

    Article  Google Scholar 

  15. Ma Q, Xu S, Zou Y (2011) Stability and synchronization for Markovian jump neural networks with partly unknown transition probabilities. Neurocomputing 74(47):3404–3411

    Article  Google Scholar 

  16. Mao X (2002) Exponential stability of stochastic delay interval systems with Markovian switching. IEEE Trans Autom Contr 47(10):1604–1612

    Article  MathSciNet  MATH  Google Scholar 

  17. Park MJ, Ko JW, Jeong CK (2011) Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47:235–238

    Article  MathSciNet  MATH  Google Scholar 

  18. Park P, Lee W-I, Lee S-Y (2015) Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. J Franklin Inst 352(4):1378–1396

    Article  MathSciNet  MATH  Google Scholar 

  19. Seuret A, Gouaisbaut F (2013) Wirtinger-based integral inequality: application to time-delay systems. Automatica 49:2860–2866

    Article  MathSciNet  MATH  Google Scholar 

  20. Shen H, Wu Z-G, Park JuH, Zhang Z (2015) Extended dissipativity-based synchronization of uncertain chaotic neural networks with actuator failures. J Franklin Inst 352(4):1722–1738

    Article  MathSciNet  MATH  Google Scholar 

  21. Shen H, Park JuH, Wu Z-G, Zhang Z (2015) Finite-time \({\cal{H}} _\infty\) synchronization for complex networks with semi-Markov jump topology. Commun. Nonlinear Sci. Numer. Simulat. 24(1–3):40–51

    Article  MathSciNet  Google Scholar 

  22. Slotine JE, Li W (1991) Applied Nonlinear Control. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  23. Song B, Park JH, Wu Z-G, Zhang Y (2012) Global synchronization of stochastic delayed complex networks. Nonlinear Dyn 70(4):2389–2399

    Article  MathSciNet  MATH  Google Scholar 

  24. Song Q, Cao J (2007) Impulsive effects on stability of fuzzy Cohen-Grossberg neural networks with time-varying delays. IEEE Trans. Systems Man Cyber., B, Cyber 37(3):733–741

    Article  Google Scholar 

  25. Wang G, Yin Q, Shen Y (2013) Exponential synchronization of coupled fuzzy neural networks with disturbances and mixed time-delays. Neurocomputing 106:77–85

    Article  Google Scholar 

  26. Wang J, Zhang H, Wang Z, Huang B (2014) Robust synchronization analysis for static delayed neural networks with nonlinear hybrid coupling. Neural Comput. & Applic. 25(3):839–848

    Article  Google Scholar 

  27. Wang J, Zhang H, Wang Z, Liang H (2015) Stochastic synchronization for Markovian coupled neural networks with partial information on transition probabilities. Neurocomputing 149(B):983–992

    Article  Google Scholar 

  28. Wang W, Li L, Peng H, Xiao J, Yang Y (2014) Stochastic synchronization of complex network via a novel adaptive nonlinear controller. Nonlinear Dyn 76(1):591–598

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang Y, Zhang H, Wang X, Yang D (2010) Networked synchronization control of coupled dynamic networks with time-varying delay. IEEE Trans. Systems Man Cyber., B, Cyber 40(6):1468–1479

    Article  Google Scholar 

  30. Wu CW, Chua L (1995) Synchronization in an array of linearly coupled dynamical systems. IEEE Trans. Circuits Syst. I, Reg. Papers 42(8):430–447

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang T, Yang L (1996) The global stability of fuzzy cellular neural networks. IEEE Trans. Circuits Syst. 43(10):880–883

    Article  MathSciNet  Google Scholar 

  32. Yang X, Cao J, Lu J (2012) Synchronization of Markovian coupled neural networks with nonidentical node-delays and random coupling strengths. IEEE Trans. Neural Netw. Learning Syst. 23(1):60–71

    Article  Google Scholar 

  33. Yang X, Cao J, Lu J (2013) Synchronization of randomly coupled neural networks with Markovian jumping and time-delay. IEEE Trans Circuits Syst I Regul Pap 60(2):363–376

    Article  MathSciNet  Google Scholar 

  34. Zeng H-B, He Y, Wu M, She J (2015) New results on stability analysis for systems with discrete distributed delay. Automatica 60:189–192

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang H, Gong D, Chen B, Liu Z (2013) Synchronization for coupled neural networks with interval delay: A novel augmented Lyapunov-Krasovskii functional method. IEEE Trans. Neural Netw. Learning Syst. 24(1):58–70

    Article  Google Scholar 

  36. Zhang H, Gong D, Wang Z, Ma D (2012) Synchronization criteria for an array of neutral-type neural networks with hybrid coupling: a novel analysis approach. Neural Process Lett 35(1):29–45

    Article  Google Scholar 

  37. Zhang H, Wang J, Wang Z, Liang H (2015) Mode-dependent stochastic synchronization for Markovian coupled neural networks with time-varying mode-delays. IEEE Trans. Neural Netw. Learning Syst. 26(11):2621–2634

    Article  MathSciNet  Google Scholar 

  38. Zhang H, Yang F, Liu X, Zhang Q (2013) Stability analysis for neural networks with time-varying delay based on quadratic convex combination. IEEE Trans. Neural Netw. Learn. Syst. 24(4):513–521

    Article  Google Scholar 

  39. Zheng C-D, Wei Z, Wang Z (2016) Robustly adaptive synchronization for stochastic Markovian neural networks of neutral type with mixed mode-dependent delays. Neurocomputing 171:1254–1264

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61273022, 61433004, 61627809).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-De Zheng.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Appendices

Appendix 1

Proof of Lemma 4

Define \(g(s)=\frac{3s-a-2b}{2(b-a)},\ \tilde{N}=\mathrm{col}\{N_1,\ \ N_2\},\ \zeta (s)=\mathrm{col}\{\chi _3,\ \ g(s)\chi _3\}.\)

It is easy to see that the following inequality holds

$$\begin{aligned} -2\zeta (s)^T\tilde{N}\theta (s)\le \zeta (s)^T\tilde{N}R^{-1}\tilde{N}^T\zeta (s)+\theta (s)^TR\theta (s). \end{aligned}$$
(26)

Integrating (26) on domain \(\mathcal {D}=\{a\le u\le b,\ u\le s\le b\}\) yields

$$\begin{aligned} -2\int ^b_a\int ^b_u\zeta (s)^T\tilde{N}\theta (s)\mathrm{d}s\mathrm{d}u&\le \int ^b_a\int ^b_u\zeta (s)^T\tilde{N}R^{-1}\tilde{N}^T\zeta (s)\mathrm{d}s\mathrm{d}u\\&\quad +\int ^b_a\int ^b_u\theta (s)^TR\theta (s)\mathrm{d}s\mathrm{d}u. \end{aligned}$$

That is

$$\begin{aligned} -2\chi _3^T[N_1\hbar _8+N_2(-\hbar _8+\hbar _9)\chi _3&\le \frac{(b-a)^2}{2}\chi _3^T \Big (N_1R^{-1}N_1^T+\frac{1}{8}N_2(R^{-1}N_2^T\Big )\chi _3\nonumber \\&\quad +\int ^b_a\int ^b_u\theta (s)^TR\theta (s)\mathrm{d}s\mathrm{d}u. \end{aligned}$$
(27)

Rearranging (27) yields (8), and this completes the proof.

Appendix 2

Proof of Theorem 1

Consider the following LKF:

$$\begin{aligned} V(x_t,i)=e_t^TP_{1i}e_t+\sum ^6_{j=1}V_j(e_t,i), \end{aligned}$$

with

$$\begin{aligned} V_1(e_t,i)=&\int ^t_{t-\tau _i(t)}\varepsilon (s)^T{\mathcal {Q}}_i\varepsilon (s)\mathrm{d}s+\int ^t_{t-\bar{\tau }}\int ^t_{\theta }\varepsilon (s)^T{\mathcal {Q}}\varepsilon (s)\mathrm{d}s\mathrm{d}{\theta },\\ V_2(e_t,i)=&\int _{t-{\bar{\tau }_i}}^{t}\varepsilon (s)^T{{\mathcal {R}}_i}\varepsilon (s)\mathrm{d}s+\int ^t_{t-\bar{\tau }}\int ^t_{\theta }\varepsilon (s)^T{\mathcal {R}}\varepsilon (s)\mathrm{d}s\mathrm{d}{\theta },\\ V_{3}(e_t,i)=&\int ^t_{t-\bar{\tau }_i}\int ^t_{\theta }\dot{e}_s^TP_{2i}\dot{e}_s\mathrm{d}s\mathrm{d}{\theta }+\int ^t_{t-\bar{\tau }}\int ^t_{\theta }\dot{e}_s^TS_1\dot{e}_s\mathrm{d}s\mathrm{d}{\theta },\\ V_{4}(e_t,i)=&\int _{t-{\bar{\tau }_i}}^{t}{\int _\theta ^{t} {\int _u ^t {\dot{e}_s^TP_{3i}\dot{e}_s\mathrm{d}s\mathrm{d}u\mathrm{d}\theta }}}+\int _{t-{\bar{\tau }}}^{t}{\int _\theta ^{t} {\int _u ^t {\dot{e}_s^TS_2\dot{e}_s\mathrm{d}s\mathrm{d}u\mathrm{d}\theta }}},\\ V_5(e_t,i)=&\int _{t-{\bar{\tau }_i}}^{t}{\int _{t - \bar{\tau }_i}^\theta {\int _u ^t {\dot{e}_s^TP_{4i}\dot{e}_s\mathrm{d}s\mathrm{d}u}}}\mathrm{d}\theta +\int _{t-{\bar{\tau }}}^{t}{\int _{t - \bar{\tau }}^\theta {\int _u ^t {\dot{e}_s^TS_3\dot{e}_s\mathrm{d}s\mathrm{d}u}}}\mathrm{d}\theta ,\\ V_6(e_t,i)=&\bar{\tau }_i\int ^t_{t-\bar{\tau }_i}\int ^t_{\theta }e_s^TP_{5i}e_s\mathrm{d}s\mathrm{d}{\theta }+\int ^t_{t-\bar{\tau }}\int ^t_{\theta }e_s^TS_4e_s\mathrm{d}s\mathrm{d}{\theta }, \end{aligned}$$

where \(\varepsilon (s)=\mathrm{col}\{e_s,\ f(e_s)\}.\)

Taking the derivative of V(t) along the trajectory of the coupled neural networks (4) and applying Lemma 8 yields

$$\begin{aligned} \pounds V(e_t,i)=2e_t^TP_{1i}\dot{e}_t+e_t^T\sum _{j = 1}^K\pi _{i j}P_{1j}e_t+\sum ^5_{j=1}\pounds V_j(e_t,i), \end{aligned}$$
(28)

where

$$\begin{aligned} \pounds V_1(e_t,i)&=\varepsilon (t)^T({\mathcal {Q}}_i+\bar{\tau }{\mathcal {Q}}) \varepsilon (t) -[1-\dot{\tau }_i(t)]\varepsilon (t-\tau _i(t))^T{\mathcal {Q}}_i \varepsilon (t-\tau _i(t))\nonumber \\&\quad +\sum _{j = 1}^K\pi _{i j}\int ^t_{t-\tau _j(t)}\varepsilon (s)^T{\mathcal {Q}}_j \varepsilon (s)\mathrm{d}s-\int ^t_{t-\bar{\tau }}\varepsilon (s)^T{\mathcal {Q}} \varepsilon (s)\mathrm{d}s, \end{aligned}$$
(29)
$$\begin{aligned} \pounds V_2(e_t,i)&=\varepsilon (t)^T({\mathcal {R}}_i+\bar{\tau }{\mathcal {R}}) \varepsilon (t) -\varepsilon (t-\bar{\tau }_i)^T{\mathcal {R}}_i\varepsilon (t-\bar{ \tau }_i)\nonumber \\&\quad +\sum _{j = 1}^K\pi _{i j}\int ^t_{t-\bar{\tau }_j}\varepsilon (s)^T {\mathcal {R}}_j\varepsilon (s)\mathrm{d}s-\int ^t_{t-\bar{\tau }}\varepsilon (s)^T {\mathcal {R}}\varepsilon (s)\mathrm{d}s, \end{aligned}$$
(30)
$$\begin{aligned} \pounds V_3(e_t,i)=&\dot{e}_t^T\big (\bar{\tau }_iP_{2i}+\bar{\tau }S_1\big ) \dot{e}_t -\int _{t-{\bar{\tau }_i}}^{t}\dot{e}_s^TP_{2i}\dot{e}_s\mathrm{d}s\nonumber \\&\quad +\sum _{j = 1}^K\pi _{i j}\int ^t_{t-\bar{\tau }_j}\int ^t_{\theta } \dot{e}_s^TP_{2j}\dot{e}_s\mathrm{d}s\mathrm{d}{\theta }-\int ^t_{t-\bar{\tau }} \dot{e}_s^TS_1\dot{e}_s\mathrm{d}s, \end{aligned}$$
(31)
$$\begin{aligned} \pounds V_4(e_t,i)=&\frac{1}{2}\dot{e}_t^T\big (\bar{\tau }^2_iP_{3i}+\bar{\tau }^ 2S_2\big )\dot{e}_t\nonumber \\&\quad +\sum _{j = 1}^K\pi _{i j}\int _{t-{\bar{\tau }_j}}^{t}{\int _\theta ^{t} {\int _u ^t {\dot{e}_s^TP_{3j}\dot{e}_s\mathrm{d}s\mathrm{d}u\mathrm{d}\theta }}}\nonumber \\&\quad -\int _{t-{\bar{\tau }_i}}^{t}{\int _\theta ^{t} \dot{e}_s^TP_{3i} \dot{e}_s\mathrm{d}s}\mathrm{d}\theta -\int _{t-{\bar{\tau }}}^{t}{\int _\theta ^{t} {{\dot{e}_s^TS_2\dot{e}_s\mathrm{d}s\mathrm{d}\theta }}}, \end{aligned}$$
(32)
$$\begin{aligned} \pounds V_5(e_t,i)=&\frac{1}{2}\dot{e}_t^T\big (\bar{\tau }^2_iP_{4i}+\bar{\tau }^ 2S_3\big )\dot{e}_t \nonumber \\&\quad +\sum _{j = 1}^K\pi _{i j}\int _{t-{\bar{\tau }_j}}^{t}{\int _{t-{\bar{ \tau }_j}}^\theta {\int _u ^t {\dot{e}_s^TP_{4j}\dot{e}_s\mathrm{d}s\mathrm{d}u\mathrm{d} \theta }}}\nonumber \\&\quad -\int _{t-{\bar{\tau }_i}}^{t}{\int _{t-{\bar{\tau }_i}}^\theta \dot{e}_s^TP _{4i}\dot{e}_s\mathrm{d}s}\mathrm{d}\theta -\int _{t-{\bar{\tau }}}^{t} {\int _{t-\bar{ \tau }}^\theta \dot{e}_s^TS_3\dot{e}_s\mathrm{d}s}\mathrm{d}\theta , \end{aligned}$$
(33)
$$\begin{aligned} \pounds V_6(e_t,i)=&e_t^T\big (\bar{\tau }_i^2P_{5i}+\bar{\tau }S_4\big )e_t -\bar{\tau }_i\int _{t-{\bar{\tau }_i}}^{t}e_s^TP_{5i}e_s\mathrm{d}s\nonumber \\&\quad +\sum _{j = 1}^K\pi _{i j}\bar{\tau }_j\int ^t_{t-\bar{\tau }_j}\int ^t_{\theta } e_s^TP_{5j}e_s\mathrm{d}s\mathrm{d}{\theta }-\int ^t_{t-\bar{\tau }}e_s^TS_4e_s\mathrm{d}s. \end{aligned}$$
(34)

Based on \(\pi _{i j}\ge 0(i\ne j),\pi _{i i}\le 0,\ {\mathcal {Q}}_j>0(i,j=1,2,\ldots ,K),\) applying (14) yields

$$\begin{aligned} \sum _{j = 1}^K\pi _{i j}\int ^t_{t-\tau _j(t)}\varepsilon (s)^T{\mathcal {Q}}_j\varepsilon (s)\mathrm{d}s\le&\sum _{j = 1,j\ne i}^K\pi _{i j}\int ^t_{t-\tau _j(t)}\varepsilon (s)^T{\mathcal {Q}}_j\varepsilon (s)\mathrm{d}s\nonumber \\ \le&\sum _{j = 1,j\ne i}^K\pi _{i j}\int ^t_{t-\bar{\tau }}\varepsilon (s)^T{\mathcal {Q}}_j\varepsilon (s)\mathrm{d}s\nonumber \\ \le&\int ^t_{t-\bar{\tau }}\varepsilon (s)^T{\mathcal {Q}}\varepsilon (s)\mathrm{d}s. \end{aligned}$$
(35)

Similarly, applying (14) yields

$$\begin{aligned} \sum _{j = 1}^K\pi _{i j}\int ^t_{t-\bar{\tau }_j}\varepsilon (s)^T{\mathcal {R}}_j\varepsilon (s)\mathrm{d}s\le&\sum _{j = 1,j\ne i}^K\pi _{i j}\int ^t_{t-\bar{\tau }_j}\varepsilon (s)^T{\mathcal {R}}_j\varepsilon (s)\mathrm{d}s\nonumber \\ \le&\sum _{j = 1,j\ne i}^K\pi _{i j}\int ^t_{t-\bar{\tau }}\varepsilon (s)^T{\mathcal {R}}_j\varepsilon (s)\mathrm{d}s\nonumber \\ \le&\int ^t_{t-\bar{\tau }}\varepsilon (s)^T{\mathcal {R}}\varepsilon (s)\mathrm{d}s. \end{aligned}$$
(36)

Applying Lemma 3 to \(P_{2i}\)-dependent terms gives

$$\begin{aligned} -\int ^{t}_{t-\tau _i(t)}\dot{e}_s^T{P_{2i}}\dot{e}_s\mathrm{d}s&\le \eth _1^T\bar{\Omega }_1(t)\eth _1, \end{aligned}$$
(37)
$$\begin{aligned} -\int ^{t-\tau _i(t)}_{t-{\bar{\tau }_i}}\dot{e}_s^T{P_{2i}}\dot{e}_s\mathrm{d}s&\le \eth _2^T\bar{\Omega }_2(t)\eth _2, \end{aligned}$$
(38)

where \(\eth _1=\mathrm{col}\{e_t\ \ \ e_{\tau _i} \ \ \ y_1\ \ \ y_3\},\ \ \eth _2=\mathrm{col}\{e_{\tau _i}\ \ \ e_{\bar{\tau }_i} \ \ \ y_2\ \ \ y_4\},\) and

$$\begin{aligned} \bar{\Omega }_1(t)&=\tau _i(t)\Big (X_{1i}P_{2i}^{-1}X_{1i}^T+\frac{1}{3}X_{2i} P_{2i}^{-1}X_{2i}^T +\frac{1}{5}X_{3i}P_{2i}^{-1}X_{3i}^T\Big )\\&\quad +\mathrm{sym}\{X_{1i}(\hbar _4-\hbar _5)+X_{2i}( \hbar _4+\hbar _5-2\hbar _6)+X_{3i}(\hbar _4-\hbar _5+6\hbar _6-6\hbar _7)\},\\ \bar{\Omega }_2(t)&=[\bar{\tau }_i-\tau _i(t)]\Big (X_{4i}P_{2i}^{-1}X_{4i}^T +\frac{1}{3}X_{5i}P_{2i}^{-1}X_{5i}^T+\frac{1}{5}X_{6i}P_{2i}^{-1}X_{6i}^T\Big )\\&\quad +\mathrm{sym}\{X_{4i}(\hbar _4-\hbar _5)+X_{5i}( \hbar _4+\hbar _5-2\hbar _6)+X_{6i}(\hbar _4-\hbar _5+6\hbar _6-6\hbar _7)\}. \end{aligned}$$

Similar to (35), changing the order of integral and applying (15) yields

$$\begin{aligned}&\sum _{j = 1}^K\pi _{i j}\int ^t_{t-\bar{\tau }_j}\int ^t_{\theta }\dot{e}_s^TP_{2j}\dot{e}_s\mathrm{d}s\mathrm{d}{\theta }\nonumber \\&\quad \le \sum _{j = 1,j\ne i}^K\pi _{i j}\int ^t_{t-\bar{\tau }_j}\int ^t_{\theta }\dot{e}_s^TP_{2j}\dot{e}_s\mathrm{d}s\mathrm{d}{\theta }\nonumber \\&\quad =\sum _{j = 1,j\ne i}^K\pi _{i j}\int ^t_{t-\bar{\tau }_j}\int ^s_{t-\bar{\tau }_j}\dot{e}_s^TP_{2j}\dot{e}_s\mathrm{d}{\theta }\mathrm{d}s\nonumber \\&\quad =\sum _{j = 1,j\ne i}^K\pi _{i j}\int ^t_{t-\bar{\tau }_j}(s-t+\bar{\tau }_j)\dot{e}_s^TP_{2j}\dot{e}_s\mathrm{d}s\nonumber \\&\quad \le \sum _{j = 1,j\ne i}^K\pi _{i j}\bar{\tau }_j\int ^t_{t-\bar{\tau }_j}\dot{e}_s^TP_{2j}\dot{e}_s\mathrm{d}s\nonumber \\&\quad \le \sum _{j = 1,j\ne i}^K\pi _{i j}\bar{\tau }_j\int ^t_{t-\bar{\tau }}\dot{e}_s^TP_{2j}\dot{e}_s\mathrm{d}s\nonumber \\&\quad \le \int ^t_{t-\bar{\tau }}\dot{e}_s^TS_1\dot{e}_s\mathrm{d}s. \end{aligned}$$
(39)

Obviously the following equality holds for any \(t>0\)

$$\begin{aligned}&\int _{t-{\bar{\tau }_i}}^{t}{\int _\theta ^{t} \dot{e}_s^TP_{3i}\dot{e}_s\mathrm{d}s}\mathrm{d}\theta \nonumber \\&\quad =\int _{t-\bar{\tau }_i}^{t-\tau _i(t)}\int _\theta ^{t-\tau _i(t)}{\dot{e}_s^TP_{3i}\dot{e}_s\mathrm{d}s}\mathrm{d}\theta \nonumber \\&\quad +\int _{t-\tau _i(t)}^{t}\int _\theta ^{t}{\dot{e}_s^TP_{3i}\dot{e}_s\mathrm{d}s}\mathrm{d}\theta +[\bar{\tau }_i-\tau _i(t)]\int _{t-\tau _i(t)}^{t}{\dot{e}_s^TP_{3i}\dot{e}_s\mathrm{d}s}. \end{aligned}$$
(40)

Applying Lemma 4 to \(P_{3i}\)-dependent double integral terms gives

$$\begin{aligned} -\int _{t-\tau _i(t)}^{t}\int _\theta ^{t} \dot{e}_s^TP_{3i}\dot{e}_s\mathrm{d}s\mathrm{d}\theta&\le \eth _3^T\bar{\Omega }_3(t)\eth _3, \end{aligned}$$
(41)
$$\begin{aligned} -\int _{t-\bar{\tau }_i}^{t-\tau _i(t)}\int _\theta ^{t-\tau _i(t)} \dot{e}_s^TP_{3i}\dot{e}_s\mathrm{d}s\mathrm{d}\theta&\le \eth _4^T\bar{\Omega }_4(t)\eth _4, \end{aligned}$$
(42)

where

$$\begin{aligned} \eth _3&=\mathrm{col}\{e_t\ \ \ y_1\ \ \ y_3\},\ \ \eth _4=\mathrm{col}\{e_{\tau _i}\ \ \ y_2\ \ \ y_4\},\\ \bar{\Omega }_3(t)&=\frac{\tau _i^2(t)}{2}\Big (X_{7i}P_{3i}^{-1}X_{7i}^T+ \frac{1}{8}X_{8i}P_{3i}^{-1}X_{8i}^T\Big )+\tau _i(t)\mathrm{sym}\Big \{X_{7i}( \hbar _1-\hbar _2)\\&\quad +\frac{1}{2}X_{8i}(\hbar _1+2\hbar _2-3\hbar _3)\Big \},\\ \bar{\Omega }_4(t)&=\frac{[\bar{\tau }_i-\tau _i(t)]^2}{2}\Big (X_{9i}P_{3i}^{-1} X_{9i}^T+\frac{1}{8}X_{10i}P_{3i}^{-1}X_{10i}^T\Big ) +[\bar{\tau }_i-\tau _i(t)] \mathrm{sym}\Big \{X_{9i}(\hbar _1-\hbar _2)\\&\quad +\frac{1}{2}X_{10i}(\hbar _1+2\hbar _2-3 \hbar _3)\Big \}. \end{aligned}$$

Setting \(\vartheta =\frac{\tau _i(t)}{\bar{\tau }_i},\omega =1-\vartheta ,\) when \(0<\tau _i(t)<\bar{\tau }_i,\) applying inequality (7) to \(P_{3i}\)-dependent single integral terms derives

$$\begin{aligned}{}[\bar{\tau }_i-\tau _i(t)]\int ^{t}_{t-\tau _i(t)}{\dot{e}_s^TP_{3i}\dot{e}_s}\mathrm{d}s&\ge \frac{\omega }{\vartheta }\Big \{(e_t-e_{\tau _i})^T{P_{3i}}(e_t-e_{\tau _i})\nonumber \\&\quad +3(e_t+e_{\tau _i}-2y_{1})^T{P_{3i}}(e_t+e_{\tau _i}-2y_{1})\nonumber \\&\quad +5(e_t-e_{\tau _i}+6y_{1}-6y_3)^T{P_{3i}}(e_t-e_{\tau _i}+6y_{1}-6y_3)\Big \}. \end{aligned}$$
(43)

Similar to (35), changing the order of integral and applying (15) yields

$$\begin{aligned}&\sum _{j = 1}^K\pi _{i j}\int _{t-{\bar{\tau }_j}}^{t}{\int _\theta ^{t} {\int _u ^t {\dot{e}_s^TP_{3j}\dot{e}_s\mathrm{d}s\mathrm{d}u\mathrm{d}\theta }}}\nonumber \\&\quad \le \sum _{j = 1,j\ne i}^K\pi _{i j}\int _{t-{\bar{\tau }_j}}^{t}{\int _\theta ^{t} {\int _u ^t {\dot{e}_s^TP_{3j}\dot{e}_s\mathrm{d}s\mathrm{d}u\mathrm{d}\theta }}} \nonumber \\&\quad =\sum _{j = 1,j\ne i}^K\pi _{i j}\int _{t-{\bar{\tau }_j}}^{t}{\int _\theta ^{t} {\int _\theta ^s {\dot{e}_s^TP_{3j}\dot{e}_s\mathrm{d}u\mathrm{d}s\mathrm{d}\theta }}}\nonumber \\&\quad =\sum _{j = 1,j\ne i}^K\pi _{i j}\int _{t-{\bar{\tau }_j}}^{t}{\int _\theta ^{t} {(s-\theta ) {\dot{e}_s^TP_{3j}\dot{e}_s\mathrm{d}s\mathrm{d}\theta }}}\nonumber \\&\quad \le \sum _{j = 1,j\ne i}^K\pi _{i j}\bar{\tau }_j\int _{t-{\bar{\tau }_j}}^{t}{\int _\theta ^{t} {{\dot{e}_s^TP_{3j}\dot{e}_s\mathrm{d}s\mathrm{d}\theta }}}\nonumber \\&\quad \le \sum _{j = 1,j\ne i}^K\pi _{i j}\bar{\tau }_j\int _{t-{\bar{\tau }}}^{t}{\int _\theta ^{t} {{\dot{e}_s^TP_{3j}\dot{e}_s\mathrm{d}s\mathrm{d}\theta }}}\nonumber \\&\quad \le \int _{t-{\bar{\tau }}}^{t}{\int _\theta ^{t} { {\dot{e}_s^TS_2\dot{e}_s\mathrm{d}s\mathrm{d}\theta }}}, \end{aligned}$$
(44)

and

$$\begin{aligned}&\sum _{j = 1}^K\pi _{i j}\int _{t-{\bar{\tau }_j}}^{t}{\int _{t-{\bar{\tau }_j}}^\theta {\int _u ^t {\dot{e}_s^TP_{4j}\dot{e}_s\mathrm{d}s\mathrm{d}u\mathrm{d}\theta }}} \nonumber \\&\quad \le \sum _{j = 1,j\ne i}^K\pi _{i j}\int _{t-{\bar{\tau }_j}}^{t}{\int _{t-{\bar{\tau }_j}}^\theta {\int _u ^t {\dot{e}_s^TP_{4j}\dot{e}_s\mathrm{d}s\mathrm{d}u\mathrm{d}\theta }}}\nonumber \\&\quad =\sum _{j = 1,j\ne i}^K\pi _{i j}\int _{t-{\bar{\tau }_j}}^{t}{\int _{t-{\bar{\tau }_j}}^\theta {\int _{t-{\bar{\tau }_j}} ^s {\dot{e}_s^TP_{4j}\dot{e}_s\mathrm{d}u\mathrm{d}s\mathrm{d}\theta }}}\nonumber \\&\quad =\sum _{j = 1,j\ne i}^K\pi _{i j}\int _{t-{\bar{\tau }_j}}^{t}{\int _{t-{\bar{\tau }_j}}^\theta {(s-t+{\bar{\tau }_j}) {\dot{e}_s^TP_{4j}\dot{e}_s\mathrm{d}s\mathrm{d}\theta }}}\nonumber \\&\quad \le \sum _{j = 1,j\ne i}^K\pi _{i j}{\bar{\tau }_j}\int _{t-{\bar{\tau }_j}}^{t}{\int _{t-{\bar{\tau }_j}}^\theta {{\dot{e}_s^TP_{4j}\dot{e}_s\mathrm{d}s\mathrm{d}\theta }}}\nonumber \\&\quad \le \sum _{j = 1,j\ne i}^K\pi _{i j}{\bar{\tau }_j}\int _{t-{\bar{\tau }}}^{t}{\int _{t-{\bar{\tau }}}^\theta {{\dot{e}_s^TP_{4j}\dot{e}_s\mathrm{d}s\mathrm{d}\theta }}}\nonumber \\&\quad \le \int _{t-{\bar{\tau }}}^{t} {\int _{t-\bar{\tau }}^\theta \dot{e}_s^TS_3\dot{e}_s\mathrm{d}s}\mathrm{d}\theta . \end{aligned}$$
(45)

It is easy to see that the following equality holds for any \(t>0\)

$$\begin{aligned}&\int _{t-\bar{\tau }_i}^{t}\int _{t - \bar{\tau }_i } ^\theta \dot{e}_s^TP_{4i}\dot{e}_s\mathrm{d}s\mathrm{d}\theta \nonumber \\&\quad =\int _{t-\tau _i(t)}^{t}\int _{t-\tau _i(t)}^\theta \dot{e}_s^TP_{4i}\dot{e}_s\mathrm{d}s\mathrm{d}\theta \nonumber \\&\quad +\int _{t-\bar{\tau }_i}^{t-\tau _i(t)}\int _{t-\bar{\tau }_i} ^\theta \dot{e}_s^TP_{4i}\dot{e}_s\mathrm{d}s\mathrm{d}\theta +\tau _i(t)\int _{t - \bar{\tau }_i }^{t-\tau _i(t)} \dot{e}_s^TP_{4i}\dot{e}_s\mathrm{d}s. \end{aligned}$$
(46)

Applying Lemma 5 to \(P_{4i}\)-dependent double integral terms gives

$$\begin{aligned} -\int _{t-\tau _i(t)}^{t}\int _{t-\tau _i(t)}^\theta \dot{e}_s^TP_{4i}\dot{e}_s\mathrm{d}s\mathrm{d}\theta&\le \eth _5^T\bar{\Omega }_5(t)\eth _5, \end{aligned}$$
(47)
$$\begin{aligned} -\int _{t-\bar{\tau }_i}^{t-\tau _i(t)}\int _{t-\bar{\tau }_i} ^\theta \dot{e}_s^TP_{4i}\dot{e}_s\mathrm{d}s\mathrm{d}\theta&\le \eth _6^T\bar{\Omega }_6(t)\eth _6, \end{aligned}$$
(48)

where

$$\begin{aligned} \eth _5&=\mathrm{col}\{e_{\tau _i}\ \ \ y_1\ \ \ y_3\},\ \ \eth _6=\mathrm{col}\{e_{\bar{\tau }_i}\ \ \ y_2\ \ \ y_4\},\\ \bar{\Omega }_5(t)&=\frac{\tau _i^2(t)}{2}\Big (X_{11i}P_{4i}^{-1}X_{11i}^T+ \frac{1}{8}X_{12i}P_{4i}^{-1}X_{12i}^T\Big )\\&\quad +\tau _i(t)\mathrm{sym}\Big \{X_{11i}(-\hbar _1+\hbar _2)+\frac{1}{2}X_{12i}( \hbar _1-4\hbar _2+3\hbar _3)\Big \},\\ \bar{\Omega }_6(t)&=\frac{[\bar{\tau }_i-\tau _i(t)]^2}{2}\Big (X_{13i}P_{4i}^{-1} X_{13i}^T +\frac{1}{8}X_{14i}P_{4i}^{-1}X_{14i}^T\Big )\\&\quad +[\bar{\tau }_i-\tau _i(t)]\mathrm{sym}\Big \{X_{13i}(-\hbar _1+\hbar _2)+ \frac{1}{2}X_{14i}(\hbar _1-4\hbar _2+3\hbar _3)\Big \}. \end{aligned}$$

For \(0<\tau _i(t)<\bar{\tau }_i,\) applying inequality (7) to \(P_{4i}\)-dependent single integral terms derives

$$\begin{aligned} \tau _i(t)\int ^{t-\tau _i(t)}_{t-{\bar{\tau }_i}}\dot{e}_s^TP_{4i}\dot{e}_s\mathrm{d}s&\ge \frac{\vartheta }{\omega }\Big \{(e_{\tau _i}-e_{\bar{\tau }_i})^T{P_{4i}} (e_{\tau _i}-e_{\bar{\tau }_i})\nonumber \\&\quad +3(e_{\tau _i}+e_{\bar{\tau }_i}-2y_{2})^T{P_{4i}}(e_{\tau _i}+e_{\bar{\tau }_i}-2y_{2})\nonumber \\&\quad +5(e_{\tau _i}-e_{\bar{\tau }_i}+6y_{2}-6y_4)^T{P_{4i}}(e_{\tau _i} -e_{\bar{\tau }_i}+6y_{2}-6y_4)\Big \}. \end{aligned}$$
(49)

According to conditions (16), the following inequalities hold for any \(t>0\)

$$\begin{aligned}&\left[ \begin{array}{c} \sqrt{\frac{\omega }{\vartheta }}(e_t-e_{\tau _i})\\ -\sqrt{\frac{\vartheta }{\omega }}(e_{\tau _i}-e_{\bar{\tau }_i})\end{array}\right] ^T\bigg [\begin{array}{cc} P_{3i} &{} Y_{1 i}\\ *&{} P_{4i} \end{array}\bigg ]\left[ \begin{array}{c} \sqrt{\frac{\omega }{\vartheta }}(e_t-e_{\tau _i})\\ -\sqrt{\frac{\vartheta }{\omega }}(e_{\tau _i}-e_{\bar{\tau }_i})\end{array}\right] \ge 0, \\&\left[ \begin{array}{c} \sqrt{\frac{\omega }{\vartheta }}(e_t+e_{\tau _i}-2y_{1})\\ -\sqrt{\frac{\vartheta }{\omega }}(e_{\tau _i}+e_{\bar{\tau }_i}-2y_{2})\end{array}\right] ^T\bigg [\begin{array}{cc} P_{3i} &{} Y_{2i}\\ *&{} P_{4i} \end{array}\bigg ] \left[ \begin{array}{c} \sqrt{\frac{\omega }{\vartheta }}(e_t+e_{\tau _i}-2y_{1})\\ -\sqrt{\frac{\vartheta }{\omega }}(e_{\tau _i}+e_{\bar{\tau }_i}-2y_{2})\end{array}\right] \ge 0,\\&\left[ \begin{array}{c} \sqrt{\frac{\omega }{\vartheta }}(e_t-e_{\tau _i}+6y_{1}-6y_3)\\ -\sqrt{\frac{\vartheta }{\omega }}(e_{\tau _i}-e_{\bar{\tau }_i}+6y_{2}-6y_4)\end{array}\right] ^T\bigg [\begin{array}{cc} P_{3i} &{} Y_{3i}\\ *&{} P_{4i} \end{array}\bigg ] \left[ \begin{array}{c} \sqrt{\frac{\omega }{\vartheta }}(e_t-e_{\tau _i}+6y_{1}-6y_3)\\ -\sqrt{\frac{\vartheta }{\omega }}(e_{\tau _i}-e_{\bar{\tau }_i}+6y_{2}-6y_4)\end{array}\right] \ge 0. \end{aligned}$$

Thus one obtains

$$\begin{aligned}&\frac{\omega }{\vartheta }(e_t-e_{\tau _i})^TP_{3i}(e_t-e_{\tau _i}) +\frac{\vartheta }{\omega }(e_{\tau _i}-e_{\bar{\tau }_i})^TP_{4i}(e_{\tau _i} -e_{\bar{\tau }_i})\nonumber \\&\quad \ge 2( e_t-e_{\tau _i})^TY_{1i}(e_{\tau _i}-e_{\bar{\tau }_i}), \end{aligned}$$
(50)
$$\begin{aligned}&\frac{\omega }{\vartheta }(e_t+e_{\tau _i}-2y_{1})^TP_{3i} (e_t+e_{\tau _i}-2y_{1})+ \frac{\vartheta }{\omega }(e_{\tau _i}+e_{\bar{\tau }_i}-2y_{2})^TP_{4i}(e_{\tau _i}+ e_{\bar{\tau }_i}-2y_{2})\nonumber \\&\quad \ge 2( e_t+e_{\tau _i}-2y_{1})^T Y_{2i}(e_{\tau _i}+ e_{\bar{\tau }_i}-2y_{2}), \end{aligned}$$
(51)
$$\begin{aligned}&\frac{\omega }{\vartheta }(e_t-e_{\tau _i}+6y_{1}-6y_3)^T{P_{3i}}(e_t-e_{\tau _i}+ 6y_{1}-6y_3)\nonumber \\&\quad +\frac{\vartheta }{\omega }(e_{\tau _i}-e_{\bar{\tau }_i}+6y_{2}-6y_4)^ T{P_{4i}}(e_{\tau _i} -e_{\bar{\tau }_i}+6y_{2}-6y_4)\nonumber \\&\quad \ge 2(e_t-e_{\tau _i}+6y_{1}-6y_3)^TY_{3i}(e_{\tau _i}-e_{\bar{\tau }_i}+ 6y_{2}-6y_4). \end{aligned}$$
(52)

When \(0<\tau _i(t)<\bar{\tau }_i,\) applying the well-known Jensen integral inequality [5] yields

$$\begin{aligned} \bar{\tau }_i\int _{t-{\bar{\tau }_i}}^t {e_s^TP_{5i}e_s}\mathrm{d}s&=\bar{\tau }_i\int _{t-\tau _i(t)}^t {e_s^TP_{5i}e_s}\mathrm{d}s+\bar{\tau }_i\int _{t-\bar{\tau }_i}^{t-\tau _i(t)} {e_s^TP_{5i}e_s}\mathrm{d}s\nonumber \\&\ge \frac{\bar{\tau }_i}{\tau _i(t)}\bigg (\int _{t-\tau _i(t)}^t {e_s}\mathrm{d}s\bigg )^TP_{5i}\bigg (\int _{t-\tau _i(t)}^t {e_s}\mathrm{d}s\bigg )\nonumber \\&\quad +\frac{\bar{\tau }_i}{\bar{\tau }_i-\tau _i(t)}\bigg (\int _{t-\bar{\tau }_i}^{t-\tau _i(t)} {e_s}\mathrm{d}s\bigg )^TP_{5i}\bigg (\int _{t-\bar{\tau }_i}^{t-\tau _i(t)} {e_s}\mathrm{d}s\bigg )\nonumber \\&=\big [1+\hslash (t)\big ]\theta _1(t)^TP_{5i}\theta _1(t) +\Big [1+\frac{1}{\hslash (t)}\Big ]\theta _2(t)^TP_{5i}\theta _2(t), \end{aligned}$$
(53)

where \(\hslash (t)=\frac{\bar{\tau }_i-\tau _i(t)}{\tau _i(t)},\theta _1(t)=\int _{t-\tau _i(t)}^t{e_s}\mathrm{d}s,\theta _2(t)=\int _{t-\bar{\tau }_i}^{t-\tau _i(t)}{e_s}\mathrm{d}s.\)

By applying condition (18), we derive

$$\begin{aligned}&\left[ \begin{array}{c} \sqrt{\hslash (t)}\theta _1(t)\\ -\frac{1}{\sqrt{\hslash (t)}}\theta _2(t)\end{array}\right] ^T\bigg [\begin{array}{cc} P_{5i}&{} Y_{4i}\\ * &{}P_{5i}\end{array}\bigg ]\left[ \begin{array}{c} \sqrt{\hslash (t)}\theta _1(t)\\ -\frac{1}{\sqrt{\hslash (t)}}\theta _2(t)\end{array}\right] \ge 0, \end{aligned}$$

which implies

$$\begin{aligned} \hslash (t)\theta _1(t)^TP_{5i}\theta _1(t) +\frac{1}{\hslash (t)}\theta _2(t)^TP_{5i}\theta _2(t)\ge \theta _1(t)^TY_{4i}\theta _2(t)+\theta _2(t)^TY_{4i}^T\theta _1(t). \end{aligned}$$
(54)

Then substituting (54) into (53) gives

$$\begin{aligned}&-\bar{\tau }_i\int _{t-{\bar{\tau }_i}}^t {e_s^TP_{5i}e_s}\mathrm{d}s\nonumber \\&\quad \le -\theta _1(t)^TP_{5i}\theta _1(t)-\theta _2(t)^TP_{5i}\theta _2(t) -\theta _1(t)^TY_{4i}\theta _2(t)-\theta _2(t)^TY_{4i}^T\theta _1(t)\nonumber \\&\quad =-\bigg [\begin{array}{c} \theta _1(t)\\ \theta _2(t)\end{array}\bigg ]^T\bigg [\begin{array}{cc} P_{5i}&{} Y_{4i}\\ * &{}P_{5i}\end{array}\bigg ]\bigg [\begin{array}{c} \theta _1(t)\\ \theta _2(t)\end{array}\bigg ]. \end{aligned}$$
(55)

Note that when \(\tau _i(t)=0\) or \(\tau _i(t)=\bar{\tau }_i,\) we have

$$\begin{aligned} \theta _1(t)=0,\ \ \theta _2(t)=\int _{t-{\bar{\tau }_i}}^t {e_s}\mathrm{d}s, \end{aligned}$$

or

$$\begin{aligned} \theta _1(t)=\int _{t-{\bar{\tau }_i}}^t {e_s}\mathrm{d}s,\ \ \theta _2(t)=0 \end{aligned}$$

, respectively. Thus, inequality (55) still holds according to Jensen integral inequality.

Similar to inequality (39), changing the order of integral gives

$$\begin{aligned} \sum _{j = 1}^K\pi _{i j}\bar{\tau }_j\int ^t_{t-\bar{\tau }_j}\int ^t_{\theta }e_s^TP_{5j}e_s\mathrm{d}s\mathrm{d}{\theta } \le \sum _{j = 1,j\ne i}^K\pi _{i j}\bar{\tau }_j^2\int ^t_{t-\bar{\tau }}e_s^TP_{5j}e_s\mathrm{d}s. \end{aligned}$$
(56)

Considering networks (4), the following zero equality holds for any positive matrix \(Z_{i}=\mathrm{diag}\{z_{11i},\ldots ,z_{1ni},\ldots ,\)\(z_{(N-1)1i},\ldots ,z_{(N-1)ni}\}\)

$$\begin{aligned}&2\dot{e}_t^TZ_{i}\bigg \{-\dot{e}_t-{C}_ie_t+{A}_if(e_t)+{B}_if(e_{\tau _i}) +\zeta \bigg (\int ^{t}_{t-\tau _i(t)}e_s\mathrm{d}s\bigg )\\&\quad +\alpha _i(t){U}_ie_t+\beta _i(t){V}_ie_{\tau _i}+\gamma _i(t){W}_i\int ^{t}_{t-\tau _i(t)}e_s\mathrm{d}s\bigg \}=0. \end{aligned}$$

Based on Assumption 2, taking mathematical expectation on both sides of above equality yields

$$\begin{aligned}&2\dot{e}_t^TZ_{i}\bigg \{-\dot{e}_t-{C}_ie_t+{A}_if(e_t)+{B}_if(e_{\tau _i})\nonumber \\&\quad +\zeta \bigg (\int ^{t}_{t-\tau _i(t)}e_s\mathrm{d}s\bigg )+\bar{\alpha }_i{U}_ie_t+\bar{\beta }_i{V}_ie_{\tau _i}+\bar{\gamma }_i{W}_i\int ^{t}_{t-\tau _i(t)}e_s\mathrm{d}s\bigg \}=0. \end{aligned}$$
(57)

For any positive scalar \(\tilde{\iota }_i,\) applying inequality (19) and Lemma 6 yields

$$\begin{aligned}&2\dot{e}_t^TZ_{i}\zeta \bigg (\int ^{t}_{t-\tau _i(t)}e_s\mathrm{d}s\bigg )\nonumber \\&\quad =2\sum ^{N-1}_{k=1}\sum ^n_{j=1}\big [\dot{x}_{kj}(t)-\dot{x}_{(k+1)j}(t)\big ]z_{kji}\bigg [\bigwedge ^n_{l=1}\varpi _{jl} \int ^{t}_{t-\tau _i(t)}x_{kl}(s)\mathrm{d}s\nonumber \\&\qquad -\bigwedge ^n_{l=1}\varpi _{jl}\int ^{t}_{t-\tau _i(t)}x_{(k+1)l}(s)\mathrm{d}s+\bigvee ^n_{l=1}\varrho _{jl} \int ^{t}_{t-\tau _i(t)}x_{kl}(s)\mathrm{d}s-\bigvee ^n_{l=1}\varrho _{jl}\int ^{t}_{t-\tau _i(t)}x_{(k+1)l}(s)\mathrm{d}s\bigg ]\nonumber \\&\quad \le 2\sum ^{N-1}_{k=1}\sum ^n_{j=1}\big |\dot{x}_{kj}(t)-\dot{x}_{(k+1)j}(t)\big |z_{kji}\sum ^n_{l=1}(|\varpi _{jl}|+|\varrho _{jl}|) \bigg |\ \int ^{t}_{t-\tau _i(t)}\big [x_{kl}(s)-x_{(k+1)l}(s)\big ]\mathrm{d}s\bigg |\nonumber \\&\quad \le 2s_0\jmath _i\sum ^{N-1}_{k=1}\sum ^n_{j=1}\big |\dot{x}_{kj}(t)-\dot{x}_{(k+1)j}(t)\big |\sum ^n_{l=1} \bigg |\ \int ^{t}_{t-\tau _i(t)}\big [x_{kl}(s)-x_{(k+1)l}(s)\big ]\mathrm{d}s\bigg |\nonumber \\&\quad \le s_0\jmath _i\sum ^{N-1}_{k=1}\sum ^n_{j=1}\sum ^n_{l=1}\bigg \{\tilde{\iota }_i\big [\dot{x}_{kj}(t)-\dot{x}_{(k+1)j}(t)\big ]^2+ \tilde{\iota }_i^{-1}\bigg ( \int ^{t}_{t-\tau _i(t)}\big [x_{kl}(s)-x_{(k+1)l}(s)\big ]\mathrm{d}s\bigg )^2\bigg \}\nonumber \\&\quad =ns_0\bigg \{{\iota }_i\dot{e}_t^T\dot{e}_t+\rho _i^{-1}\bigg ( \int ^{t}_{t-\tau _i(t)}e_s\mathrm{d}s\bigg )^T\bigg ( \int ^{t}_{t-\tau _i(t)}e_s\mathrm{d}s\bigg )\bigg \}, \end{aligned}$$
(58)

where \({\iota }_i=\jmath _i\tilde{\iota }_i,\rho _i=\jmath _i^{-1}\tilde{\iota }_i.\)

On the other hand, based on Assumption 1, the following inequalities hold for any \(u,v\in {\mathbb {R}}\) with \(u\ne v\)

$$\begin{aligned}&\left[ \bar{f}_k(u)-\bar{f}_k(v)-l^-_k(u-v)\right] \cdot \left[ \bar{f}_k(u)-\bar{f}_k(v)-{l^+_k}(u-v)\right] \le 0,\ \ \ \ \ \ k\in {\mathbb {N}}. \end{aligned}$$

Thus, for any positive scalar \(t^j_{1ik}(j=1,2,\ldots ,N-1;\ k\in {\mathbb {N}})\) the following inequalities hold

$$\begin{aligned}&-[x_{jk}(t)-x_{j+1,k}(t)]^2t^j_{1ik}l^-_k{l^+_k}-t^j_{1ik}[\bar{f}_k(x_{jk}(t))-\bar{f}_k(x_{j+1,k}(t))]^2\\&\quad +[x_{jk}(t)-x_{j+1,k}(t)]t^j_{1ik}(l^-_k+{l^+_k})[\bar{f}_k(x_{jk}(t))-\bar{f}_k(x_{j+1,k}(t))]\ge 0,\qquad \qquad \forall \ k\in {\mathbb {N}}. \end{aligned}$$

Denoting \(T^j_{1i}=\mathrm{diag}\{t^j_{1i1},t^j_{1i2},\ldots ,t^j_{1in}\},\) the above inequalities are equivalent to the following ones

$$\begin{aligned}&-[x_{j}(t)-x_{j+1}(t)]^TT^j_{1i}\tilde{L}_1[x_{j}(t)-x_{j+1}(t)]+2[x_{j}(t)\\&\qquad -x_{j+1}(t)]^TT^j_{1i}\tilde{L}_2[\bar{f}(x_{j}(t)) -\bar{f}(x_{j+1}(t))]\\&\quad -[\bar{f}(x_{j}(t))-\bar{f}(x_{j+1}(t))]^TT^j_{1i}[\bar{f}(x_{j}(t))-\bar{f}(x_{j+1}(t))]\ge 0,\ \ \ \ \ \forall \ j=1,2,\ldots ,N-1. \end{aligned}$$

Summing both sides of the above inequalities from \(j=1\) to \(N-1\) yields

$$\begin{aligned} -e_t^TT_{1i}L_1e_t+2e_t^TT_{1i}L_2f(e_t)-(Mf(e_t))^TT_{1i}f(e_t)\ge 0, \end{aligned}$$

where \(T_{1i}=\mathrm{diag}\{T^1_{1i},T^2_{1i},\ldots ,T^{N-1}_{1i}\}.\) That is

$$\begin{aligned} 0\le \varepsilon (t)^T\bigg [\begin{array}{cc}-T_{1i}L_1 &{} T_{1i}L_2\\ *&{} -T_{1i}\end{array}\bigg ]\varepsilon (t). \end{aligned}$$
(59)

Similarly the following matrix inequalities hold for any positive diagonal matrix \(T_{2i},T_{3i}\) with compatible dimensions

$$\begin{aligned} 0&\le \varepsilon (t-\tau _i(t))^T\bigg [\begin{array}{cc}-T_{2i}L_1 &{} T_{2i}L_2\\ *&{} -T_{2i}\end{array}\bigg ]\varepsilon (t-\tau _i(t)), \end{aligned}$$
(60)
$$\begin{aligned} 0&\le \varepsilon (t-\bar{\tau }_i)^T\bigg [\begin{array}{cc}-T_{3i}L_1 &{} T_{3i}L_2\\ *&{} -T_{3i}\end{array}\bigg ]\varepsilon (t-\bar{\tau }_i). \end{aligned}$$
(61)

For \(0<\tau _i(t)<\bar{\tau }_i,\) substituting (29)-(61) into (28) and taking mathematical expectation yields

$$\begin{aligned} {\mathbb {E}}\{\pounds V(e_t,i)\} \le {\mathbb {E}}\left\{ \xi _i(t)^T\Big (\Omega _{i}+\Omega _{i}(\tau _i(t))+ns_0\rho _i^{-1}\epsilon _{12}^T\epsilon _{12}\Big )\xi _i(t)\right\} , \end{aligned}$$
(62)

where

$$\begin{aligned} \Omega _{i}(s)&=s\aleph _1^T\Big (X_{1i}P_{2i}^{-1}X_{1i}^T +\frac{1}{3}X_{2i}P_ {2i}^{-1}X_{2i}^T+\frac{1}{5}X_{3i}P_{2i}^{-1}X_{3i}^T\Big )\aleph _1 \\&\quad +(\bar{ \tau }_i-s)\aleph _2^T\Big (X_{4i}P_{2i}^{-1}X_{4i}^T+\frac{1}{3}X_{5i}P_{2i}^{-1} X_{5i}^T\\&\quad +\frac{1}{5}X_{6i}P_{2i}^{-1}X_{6i}^T\Big )\aleph _2+\frac{s^2}{2}\aleph _3^T \Big (X_{7i}P_{3i}^{-1}X_{7i}^T +\frac{1}{8}X_{8i}P_{3i}^{-1}X_{8i}^T\Big ) \aleph _3+s\aleph _3^T\mathrm{sym}\Big \{X_{7i}(\hbar _1-\hbar _2)\\&\quad +\frac{1}{2}X_{8i}(\hbar _1+2\hbar _2-3\hbar _3)\Big \}\aleph _3+\frac{(\bar{\tau }_i -s)^2}{2}\aleph _4^T\Big (X_{9i}P_{3i}^{-1}X_{9i}^T +\frac{1}{8}X_{10i}P_{3i}^{-1} X_{10i}^T\Big )\aleph _4 +(\bar{\tau }_i-s)\aleph _4^T\\&\quad \cdot \mathrm{sym}\Big \{X_{9i}(\hbar _1-\hbar _2)+\frac{1}{2}X_{10i}(\hbar _1+2 \hbar _2-3\hbar _3)\Big \}\aleph _4 \\&\quad +\frac{s^2}{2}\aleph _5^T\Big (X_{11i}P_{4i}^{-1} X_{11i}^T+\frac{1}{8}X_{12i}P_{4i}^{-1}X_{12i}^T\Big )\aleph _5\\&\quad +s\aleph _5^T\mathrm{sym}\Big \{X_{11i}(-\hbar _1+\hbar _2)+\frac{1}{2}X_{12i}( \hbar _1-4\hbar _2+3\hbar _3)\Big \}\aleph _5 +\frac{(\bar{\tau }_i-s)^2}{2}\aleph _6^T \Big (X_{13i}P_{4i}^{-1}X_{13i}^T \\&\quad +\frac{1}{8}X_{14i}P_{4i}^{-1}X_{14i}^T\Big )\aleph _6 +(\bar{\tau }_i-s) \aleph _6^T\mathrm{sym}\Big \{X_{13i}(-\hbar _1+\hbar _2)+\frac{1}{2}X_{14i}( \hbar _1-4\hbar _2+3\hbar _3)\Big \}\aleph _6. \end{aligned}$$

Based on assumptions (13) and Lemmas 35, it is easy to see that inequality (62) still holds for \(\tau _i(t)=0\) or \(\tau _i(t)=\bar{\tau }_i.\)

It is easy to see that the coefficient of \(\tau _i{(t)^2}\) in \(\Omega _{i}(\tau _i(t))\) is

$$\begin{aligned} \bar{\aleph }&=\frac{1}{2}\Big \{\aleph _3^T\Big (X_{7i}P_{3i}^{-1}X_{7i}^T +\frac{1}{8}X_{8i}P_{3i}^{-1}X_{8i}^T\Big )\aleph _3+\aleph _4^T\Big (X_{9i}P_{3i}^{-1}X_{9i}^T +\frac{1}{8}X_{10i}P_{3i}^{-1}X_{10i}^T\Big )\aleph _4 \\&\quad +\aleph _5^T\Big (X_{11i}P_{4i}^{-1}X_{11i}^T+\frac{1}{8}X_{12i}P_{4i}^{-1}X_{12i}^T\Big )\aleph _5+\aleph _6^T\Big (X_{13i}P_{4i}^{-1}X_{13i}^T +\frac{1}{8}X_{14i}P_{4i}^{-1}X_{14i}^T\Big )\aleph _6\Big \}. \end{aligned}$$

Since \(\bar{\aleph }\) is nonnegative definite, based on Lemma 7, the following inequality

$$\begin{aligned} \Omega _{i}+\Omega _{i}(\tau _i(t))+ns_0\rho _i^{-1}\epsilon _{12}^T\epsilon _{12}<0, \end{aligned}$$
(63)

holds if and only if the following inequalities hold, respectively,

$$\begin{aligned}&\Omega _{i}+\Omega _{li}+\tilde{\Omega }_{li}+ns_0\rho _i^{-1}\epsilon _{12}^T\epsilon _{12}<0,\ \ \ \ \ l=1,2, \end{aligned}$$
(64)

where

$$\begin{aligned} \tilde{\Omega }_{1i}&=\bar{\tau }_i\aleph _1^T\Big (X_{1i}P_{2i}^{-1}X_{1i}^T +\frac{1}{3}X_{2i}P_{2i}^{-1}X_{2i}^T+\frac{1}{5}X_{3i}P_{2i}^{-1}X_{3i}^T\Big )\aleph _1 \\&\quad +\frac{\bar{\tau }_i^2}{2}\aleph _3^T\Big (X_{7i}P_{3i}^{-1}X_{7i}^T + \frac{1}{8}X_{8i}P_{3i}^{-1}X_{8i}^T\Big )\aleph _3\\&\quad +\frac{\bar{\tau }_i^2}{2}\aleph _5^T\Big (X_{11i}P_{4i}^{-1}X_{11i}^T +\frac{1}{8}X_{12i}P_{4i}^{-1}X_{12i}^T\Big )\aleph _5,\\ \tilde{\Omega }_{2i}&=\bar{\tau }_i\aleph _2^T\Big (X_{4i}P_{2i}^{-1}X_{4i}^T+\frac{1}{3}X_{5i}P_{2i}^{-1}X_{5i}^T +\frac{1}{5}X_{6i}P_{2i}^{-1}X_{6i}^T\Big )\aleph _2\\&\quad +\frac{\bar{\tau }_i^2}{2}\aleph _4^T\Big (X_{9i}P_{3i}^{-1}X_{9i}^T +\frac{1}{8}X_{10i}P_{3i}^{-1}X_{10i}^T\Big )\aleph _4\\&\quad +\frac{\bar{\tau }_i^2}{2}\aleph _6^T\Big (X_{13i}P_{4i}^{-1}X_{13i}^T +\frac{1}{8}X_{14i}P_{4i}^{-1}X_{14i}^T\Big )\aleph _6. \end{aligned}$$

Utilizing the well-known Schur complement yields that inequalities (64) are equivalent to inequalities (20). Therefore, if inequalities (20) hold, then we can derive from (62) that \({\mathbb {E}}\{\pounds V(e_t,i)\}<0.\)

Denote \(\upsilon =\min _{i\in {\mathcal {K}},l=1,2}\big \{\lambda _{\min }\big (-\Omega _{i}-\Omega _{li}-\tilde{\Omega }_{li}-ns_0\rho _i^{-1}\epsilon _{12}^T\epsilon _{12}\big )\big \}.\) It follows from inequality (20) that \(\upsilon >0.\) For any \(i\in {\mathcal {K}},\) applying (62) gives

$$\begin{aligned} {\mathbb {E}}\{\pounds V(e_t,i)\} \le -\upsilon {\mathbb {E}}\left\{ ||\xi _i(t)||^2\right\} \le -\upsilon {\mathbb {E}}\left\{ ||e(t)||^2\right\} . \end{aligned}$$

Thus utilizing Itô’s formula yields

$$\begin{aligned} {\mathbb {E}}\{V(e_t,i)\}- {\mathbb {E}}\{V(e_0,\eta _0)\}={\mathbb {E}}\left\{ \int _0^t\pounds V(e_s,\eta (s))\mathrm{d}s\right\} \le -\upsilon {\mathbb {E}}\left\{ \int _0^t||e(s)||^2\mathrm{d}s\right\} . \end{aligned}$$
(65)

On the other hand, for any \(i\in {\mathcal {K}},\) it follows from the definition of \(V(e_t,i)\) that \({\mathbb {E}}\{V(e_t,i)\}\ge 0.\) Applying inequality (65) yields

$$\begin{aligned} {\mathbb {E}}\left\{ \int _0^t||e(s)||^2\mathrm{d}s\right\} \le \frac{1}{\upsilon }{\mathbb {E}}\{V(e_0,\eta _0)\}. \end{aligned}$$

That is, the integral \({\mathbb {E}}\big \{\int _0^{+\infty }||e(s)||^2\mathrm{d}s\big \}\) is convergent. According to Barbalat’s Lemma (see, e.g., [22]), we have

$$\begin{aligned} \lim _{t\rightarrow +\infty }{\mathbb {E}}\left\{ ||e(t)||^2\right\} =0. \end{aligned}$$

Therefore, from Definition 1, networks (4) are globally asymptotically synchronized in mean square. This completes the proof.

Appendix 3

Proof of Theorem 2

Consider the following LKF:

$$\begin{aligned} V(e_t)=e_t^TP_{1}e_t+\sum ^3_{j=1}V_j(e_t), \end{aligned}$$

with

$$\begin{aligned} V_1(e_t)=&\int ^t_{t-\tau (t)}\varepsilon (s)^T{\mathcal {Q}}\varepsilon (s)\mathrm{d}s+\int _{t-{\bar{\tau }}}^{t}\varepsilon (s)^T{{\mathcal {R}}}\varepsilon (s)\mathrm{d}s,\\ V_2(e_t)=&\int ^t_{t-\bar{\tau }}\int ^t_{\theta }\dot{e}_s^TP_{2}\dot{e}_s\mathrm{d}s\mathrm{d}{\theta }+\int _{t-{\bar{\tau }}}^{t}{\int _\theta ^{t} {\int _u ^t {\dot{e}_s^TP_{3}\dot{e}_s\mathrm{d}s\mathrm{d}u\mathrm{d}\theta }}},\\ V_3(e_t)=&\int _{t-{\bar{\tau }}}^{t}{\int _{t - \bar{\tau }}^\theta {\int _u ^t {\dot{e}_s^TP_{4}\dot{e}_s\mathrm{d}s\mathrm{d}u}}}\mathrm{d}\theta +\int ^t_{t-\bar{\tau }}\int ^t_{\theta }{e}_s^TP_{5}{e}_s\mathrm{d}s\mathrm{d}{\theta }. \end{aligned}$$

Following the same line as in Theorem 1, we can easily complete the proof of Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, CD., Sun, N. & Zhang, H. New stochastic synchronization criteria for fuzzy Markovian hybrid neural networks with random coupling strengths. Neural Comput & Applic 31 (Suppl 2), 825–843 (2019). https://doi.org/10.1007/s00521-017-3043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3043-3

Keywords

Navigation