Skip to main content

Advertisement

Log in

Changes in corneal biomechanics in patients with diabetes mellitus: a systematic review and meta-analysis

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

To determine the changes in corneal biomechanical parameters in patients with diabetes mellitus (DM) in comparison with controls.

Methods

Pertinent studies were identified by comprehensively search of PubMed, Embase, the Web of Science, the Cochrane Library, Scopus, the China National Knowledge Infrastructure and the Chinese biomedical disc (CBM) databases. Pooling analyses by random models using the D–L method were performed for corneal hysteresis (CH), the corneal resistance factor (CRF), corneal-compensated intraocular pressure (IOPcc) and Goldmann-correlated intraocular pressure (IOPg).

Results

A total of 15 studies were included in the final analysis, involving 1506 eyes in the diabetic group and 2190 eyes in the control group. The diabetic group had significantly higher CH, CRF, IOPg and IOPcc values than the control group. The pooled mean differences were 1.34 mmHg (95% confidence interval [CI] 0.60–2.08 mmHg, P < 0.001) for IOPg and 0.85 mmHg (95% CI 0.18–1.51 mmHg, P = 0.013) for IOPcc, 0.38 mmHg (95% CI 0.01–0.75, P = 0.047) for CH and 0.63 mmHg (95% CI 0.27–0.98, P = 0.001) for the CRF. Sensitivity analyses using the leave-one-out method showed a consistent significant difference between the groups (all P < 0.001).

Conclusions

Corneal biomechanics changed in the patients with DM. High CH, CRF, IOPcc and IOPg values may be associated factors for diabetes mellitus. Future studies are warranted to clarify the underlying mechanisms and explore the relationship between corneal biomechanics, glaucoma and diabetes mellitus.

Registration

PROSPERO registration No CRD4201705465.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14:88–98

    Article  PubMed  Google Scholar 

  2. Ljubimov AV (2017) Diabetic complications in the cornea. Vis Res 139:138–152

    Article  PubMed  Google Scholar 

  3. Bikbova G, Oshitari T, Tawada A, Yamamoto S (2012) Corneal changes in diabetes mellitus. Curr Diabetes Rev 8:294–302

    Article  CAS  PubMed  Google Scholar 

  4. Wang W, Du S, Zhang X (2015) Corneal deformation response in patients with primary open-angle glaucoma and in healthy subjects analyzed by Corvis ST. Invest Ophthalmol Vis Sci 56:5557–5565

    Article  PubMed  Google Scholar 

  5. Luce DA (2005) Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 31:156–162

    Article  PubMed  Google Scholar 

  6. Elsheikh A, Joda A, Abass A, Garway-Heath D (2015) Assessment of the ocular response analyzer as an instrument for measurement of intraocular pressure and corneal biomechanics. Curr Eye Res 40:1111–1119

    Article  PubMed  Google Scholar 

  7. Wang AS, Alencar LM, Weinreb RN et al (2013) Repeatability and reproducibility of Goldmann applanation, dynamic contour, and ocular response analyzer tonometry. J Glaucoma 22:127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. David VP, Stead RE, Vernon SA (2013) Repeatability of ocular response analyzer metrics: a gender-based study. Optom Vis Sci 90:691–699

    Article  PubMed  Google Scholar 

  9. Kotecha A, White E, Schlottmann PG, Garway-Heath DF (2010) Intraocular pressure measurement precision with the Goldmann applanation, dynamic contour, and ocular response analyzer tonometers. Ophthalmology 117:730–737

    Article  PubMed  Google Scholar 

  10. Pinero DP, Alcon N (2015) Corneal biomechanics: a review. Clin Exp Optom 98:107–116

    Article  PubMed  Google Scholar 

  11. Chan MP, Grossi CM, Khawaja AP et al (2016) Associations with intraocular pressure in a large cohort: results from the UK biobank. Ophthalmology 123:771–782

    Article  PubMed  Google Scholar 

  12. Chua J, Nongpiur ME, Zhao W et al (2017) Comparison of corneal biomechanical properties between Indian and Chinese adults. Ophthalmology 124:1271–1279

    Article  PubMed  Google Scholar 

  13. Del BM, Casas P, Caramello C et al (2019) An update on corneal biomechanics and architecture in diabetes. J Ophthalmol 2019:7645352

    Google Scholar 

  14. Perez-Rico C, Gutierrez-Ortiz C, Gonzalez-Mesa A (2015) Effect of diabetes mellitus on Corvis ST measurement process. Acta Ophthalmol 93:e193–e198

    Article  CAS  PubMed  Google Scholar 

  15. Sahin A, Bayer A, Ozge G, Mumcuoglu T (2009) Corneal biomechanical changes in diabetes mellitus and their influence on intraocular pressure measurements. Invest Ophthalmol Vis Sci 50:4597–4604

    Article  PubMed  Google Scholar 

  16. Goldich Y, Barkana Y, Gerber Y et al (2009) Effect of diabetes mellitus on biomechanical parameters of the cornea. J Cataract Refract Surg 35:715–719

    Article  PubMed  Google Scholar 

  17. Ramm L, Herber R, Spoerl E, Pillunat LE, Terai N (2019) Measurement of corneal biomechanical properties in diabetes mellitus using the ocular response analyzer and the Corvis ST. Cornea 38:595–599

    Article  PubMed  Google Scholar 

  18. Schweitzer C, Korobelnik JF, Boniol M et al (2016) Associations of biomechanical properties of the cornea with environmental and metabolic factors in an elderly population: the ALIENOR study. Invest Ophthalmol Vis Sci 57:2003–2011

    Article  CAS  PubMed  Google Scholar 

  19. Yazgan S, Celik U, Kaldirim H et al (2014) Evaluation of the relationship between corneal biomechanic and HbA1C levels in type 2 diabetes patients. Clin Ophthalmol 8:1549–1553

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nalcacioglu-Yuksekkaya P, Sen E, Cetinkaya S, Bas V, Aycan Z, Ozturk F (2014) Corneal biomechanical characteristics in children with diabetes mellitus. Int Ophthalmol 34:881–886

    Article  PubMed  Google Scholar 

  21. Kara N, Yildirim Y, Univar T, Kontbay T (2013) Corneal biomechanical properties in children with diabetes mellitus. Eur J Ophthalmol 23:27–32

    Article  PubMed  Google Scholar 

  22. Scheler A, Spoerl E, Boehm AG (2012) Effect of diabetes mellitus on corneal biomechanics and measurement of intraocular pressure. Acta Ophthalmol 90:e447–e451

    Article  PubMed  Google Scholar 

  23. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang W, Zhang X (2014) Choroidal thickness and primary open-angle glaucoma: a cross-sectional study and meta-analysis. Invest Ophthalmol Vis Sci 55:6007–6014

    Article  PubMed  Google Scholar 

  25. Beato JN, Esteves-Leandro J, Reis D et al (2019) Structural and biomechanical corneal differences between type 2 diabetic and nondiabetic patients. J Ophthalmol 2019:3764878

    PubMed  PubMed Central  Google Scholar 

  26. Bekmez S, Kocaturk T (2018) Higher intraocular pressure levels associated with lower hysteresis in type 2 diabetes. Open Ophthalmol J 12:29–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Akkaya S, Can E, Ozturk F (2016) Comparison of the corneal biomechanical properties, optic nerve head topographic parameters, and retinal nerve fiber layer thickness measurements in diabetic and non-diabetic primary open-angle glaucoma. Int Ophthalmol 36:727–736

    Article  PubMed  Google Scholar 

  28. Narayanaswamy A, Chung RS, Wu RY et al (2011) Determinants of corneal biomechanical properties in an adult Chinese population. Ophthalmology 118:1253–1259

    PubMed  Google Scholar 

  29. Kotecha A, Oddone F, Sinapis C et al (2010) Corneal biomechanical characteristics in patients with diabetes mellitus. J Cataract Refract Surg 36:1822–1828

    Article  PubMed  Google Scholar 

  30. Hager A, Wegscheider K, Wiegand W (2009) Changes of extracellular matrix of the cornea in diabetes mellitus. Graefes Arch Clin Exp Ophthalmol 247:1369–1374

    Article  CAS  PubMed  Google Scholar 

  31. Bao F, Deng M, Zheng X et al (2017) Effects of diabetes mellitus on biomechanical properties of the rabbit cornea. Exp Eye Res 161:82–88

    Article  CAS  PubMed  Google Scholar 

  32. Chen Y, Tsao SW, Heo M et al (2017) Age-stratified analysis of diabetes and pseudophakia effects on corneal endothelial cell density: a retrospective eye bank study. Cornea 36:367–371

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sanchis-Gimeno JA, Alonso L, Rahhal M, Bastir M, Perez-Bermejo M, Belda-Salmeron L (2017) Corneal thickness differences between type 2 diabetes and non-diabetes subjects during preoperative laser surgery examination. J Diabetes Complicat 31:209–212

    Article  Google Scholar 

  34. Beckman RJ, Behndig A, Hallberg P, Linden C (2014) Increased corneal hysteresis after corneal collagen crosslinking: a study based on applanation resonance technology. JAMA Ophthalmol 132:1426–1432

    Article  Google Scholar 

  35. Sudhahar V, Okur MN, Bagi Z et al (2018) Akt2 (protein kinase B beta) stabilizes ATP7A, a copper transporter for extracellular superoxide dismutase, in vascular smooth muscle: novel mechanism to limit endothelial dysfunction in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 38:529–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao D, Cho J, Kim MH, Friedman DS, Guallar E (2015) Diabetes, fasting glucose, and the risk of glaucoma: a meta-analysis. Ophthalmology 122:72–78

    Article  PubMed  Google Scholar 

  37. Liu J, Roberts CJ (2005) Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg 31:146–155

    Article  PubMed  Google Scholar 

  38. Perez BF, Martinez DLCJ, Camacho BI et al (2018) Correlating corneal biomechanics and ocular biometric properties with lamina cribrosa measurements in healthy subjects. Semin Ophthalmol 33:223–230

    Google Scholar 

  39. Zhang B, Shweikh Y, Khawaja AP, Gallacher J, Bauermeister S, Foster PJ (2019) Associations with corneal hysteresis in a population cohort: results from 96 010 UK biobank participants. Ophthalmology 126:1500–1510

    Article  PubMed  Google Scholar 

  40. Akkaya S, Kucuk B, Dogan HK, Can E (2018) Evaluation of the lamina cribrosa in patients with diabetes mellitus using enhanced depth imaging spectral-domain optical coherence tomography. Diab Vasc Dis Res 15:442–448

    Article  PubMed  Google Scholar 

  41. Wu Z, Xu G, Weinreb RN, Yu M, Leung CK (2015) Optic nerve head deformation in glaucoma: a prospective analysis of optic nerve head surface and lamina cribrosa surface displacement. Ophthalmology 122:1317–1329

    Article  PubMed  Google Scholar 

  42. Khawaja AP, Rojas LK, Hardcastle AJ et al (2019) Genetic variants associated with corneal biomechanical properties and potentially conferring susceptibility to keratoconus in a genome-wide association study. JAMA Ophthalmol 137:1005–1012

    Article  PubMed Central  PubMed  Google Scholar 

  43. Lanza M, Iaccarino S, Bifani M (2016) In vivo human corneal deformation analysis with a Scheimpflug camera, a critical review. J Biophoton 9:464–477

    Article  Google Scholar 

  44. He M, Wang W, Ding H, Zhong X (2017) Corneal biomechanical properties in high myopia measured by dynamic scheimpflug imaging technology. Optom Vis Sci 94:1074–1080

    Article  PubMed  Google Scholar 

  45. Wang W, He M, He H, Zhang C, Jin H, Zhong X (2017) Corneal biomechanical metrics of healthy Chinese adults using Corvis ST. Contact Lens Anterior Eye 40:97–103

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

GX, WW, MH and ZC conceived the idea and designed the study. XW, JW and LC collected the data. GX and WW performed the data analysis. All authors participated in the critical revision of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zilin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Ethical approval

As this was a review study, no ethics approval was required.

Informed consent

For this type of study, informed consent was not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the topical collection Eye Complications of Diabetes, managed by Giuseppe Querques.

Xiaoyi Wang, Guihua Xu and Wei Wang are Co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xu, G., Wang, W. et al. Changes in corneal biomechanics in patients with diabetes mellitus: a systematic review and meta-analysis. Acta Diabetol 57, 973–981 (2020). https://doi.org/10.1007/s00592-020-01481-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-020-01481-0

Keywords

Navigation