Skip to main content
Log in

Potential therapeutic advantage of ribose-cysteine in the inhibition of astrocytoma cell proliferation

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

It has been observed that astrocyte and astrocytoma cells differ in their response to d-ribose-l-cysteine (RibCys) in the culture medium. RibCys, a prodrug of l-cysteine, elevates the level of cysteine and glutathione in both astrocytoma and astrocyte cultures. It also affects the activity of two sulfurtransferases, 3-mercaptopyruvate sulfurtransferase and rhodanese, involved in the metabolism of sulfane sulfur-containing compounds and in consequence exerts an effect on the level of sulfane sulfur. Under conditions, in which the raised level of sulfane sulfur was accompanied by an elevated activity of 3-mercaptopyruvate sulfurtransferase, the proliferation of the human astrocytome U373 line was decreased. The experiments were simultaneously performed with murine astrocytes to compare the behavior of normal cells under similar conditions. In murine astrocytes, RibCys was capable of increasing cellular proliferation, and was accompanied by a diminished level of sulfane sulfur and unchanged activity of the two sulfurtransferases. Thus, RibCys might offer a therapeutic advantage in the inhibition of astrocytoma cell proliferation. Besides, in the absence of oxidative stress, measured as the ratio of GSH/GSSG, the obtained results confirm that the fall in the level of sulfane sulfur is associated with increasing proliferation of cells, whereas a rise in the level causes a decrease in the proliferation of U373 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arrigo AP (1999) Gene expression and thiol redox state. Free Radic Biol Med 27:936–944

    Article  PubMed  CAS  Google Scholar 

  • Atzori L, Dypbukt JM, Sundqvist K, Cotgreave I, Edman CC, Moldeus P, Grafstrom RC (1990) Growth-associated modifications of low-molecular-weight thiols and protein sulfhydryls in human bronchial fibroblasts. J Cell Physiol 143:165–171

    Article  PubMed  CAS  Google Scholar 

  • Dominick PK, Cassidy PB, Roberts JC (2001) A new and versatile method for determination of thiolamines of biological importance. J Chromatogr B 761:1–12

    Article  CAS  Google Scholar 

  • Droge W, Breitkreutz R (2000) Glutathione and immune function. Proc Nutr Soc 59:595–600

    Article  PubMed  CAS  Google Scholar 

  • Estrela JM, Hernandez R, Terradez P, Asensi M, Puertes RI, Vina J (1992) Regulation of glutathione metabolism in Ehrlich ascites tumor cells. Biochem J 286:257–262

    PubMed  CAS  Google Scholar 

  • Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43(2):143–181

    Article  PubMed  CAS  Google Scholar 

  • Gardiner CS, Reed DJ (1995) Synthesis of glutathione in the preimplantation mouse embryo. Arch Biochem Biophys 318:30–36

    Article  PubMed  CAS  Google Scholar 

  • Ghibellia L, Fanellia C, Rotilioa G, Lafaviaa E, Coppolaa S, Colussia C, Civitarealea P, Ciriolob MR (1998) Rescue of cells from apoptosis by inhibition of active GSH extrusion. FASEB J 12:479–486

    Google Scholar 

  • Guebela DV, Torresb NV (2004) Dynamics of sulfur amino acids in mammalian brain: assessment of the astrocytic-neuronal cysteine interaction by a mathematical hybrid model. Biochim Biophys Acta 1674:12–28

    Google Scholar 

  • Hall AG (1999a) Glutathione and the regulation of cell death. Adv Exp Med Biol 457:199–203

    PubMed  CAS  Google Scholar 

  • Hall AG (1999b) The role of glutathione in the regulation of apoptosis. Eur J Clin Invest 29:238–245

    Article  PubMed  CAS  Google Scholar 

  • Hamilos DL, Zelarney P, Mascali JJ (1989) Lymphocyte proliferation in glutathione-depleted lymphocytes: direct relationship between glutathione availability and the proliferative response. Immunopharmacology 18:223–235

    Article  PubMed  CAS  Google Scholar 

  • Hwang C, Sinskey AJ (1991) The role of oxidation-reduction potential in monitoring growth of mammalian cultured cells. In: Spier RE, Griffiths JB, Meignier B (eds) Production of biologicals from animal cells in culture. Halley Court, Oxford, pp 548–657

    Google Scholar 

  • Iwata S, Hori T, Sato N, Ueda-Taniguchi Y, Yamabe T, Nakamura H, Masutani H, Yodoi J (1994) Thiol-mediated redox regulation of lymphocyte proliferation: possible involvement of adult T cell leukemia-derived factor and glutathione in transferring receptor expression. J Immunol 152:5633–5642

    PubMed  CAS  Google Scholar 

  • Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348:93–112

    Article  PubMed  CAS  Google Scholar 

  • Jurkowska H, Wróbel M (2008) N-acetyl-l-cysteine as a source of sulfane sulfur in astrocytoma and astrocyte cultures: correlations with cell proliferation. Amino Acids 34:231–237. doi:10.1007/s00726-007-0471-2

    Article  PubMed  CAS  Google Scholar 

  • Kosower EM (1970) A role for glutathione in muscle contraction. Experientia 26:76–77

    Article  Google Scholar 

  • Lang CA, Mills BJ, Mastropaolo W, Liu MC (2000) Blood glutathione decreases in chronic diseases. J Lab Clin Med 135:402–405

    Article  PubMed  CAS  Google Scholar 

  • Livingstone C, Davis J (2007) Targeting therapeutics against glutathione depletion in diabetes and its complications. Br J Diabetes Vasc Dis 7:258–265

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randal RI (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from at cerebral tissue. J Cell Biol 85:890–902

    Article  PubMed  CAS  Google Scholar 

  • Meister A (1989) Metabolism and function of glutathione. In: Dolphin D, Poulson R, Avramovic O (eds) Glutathione: chemical and biochemical and medical aspects. Wiley, New York, pp 367–474

    Google Scholar 

  • Mihm S, Galter D, Droge W (1995) Modulation of transcription factor NF-kB activity by intracellular glutathione levels and by variations of the extracellular cysteine supply. FASEB J 9:246–252

    PubMed  Google Scholar 

  • Ogasawara Y, Isoda S, Tanabe S (1994) Tissue and subcellular distribution of bound and acid-labile sulfur, and the enzymic capacity for sulfide production in the rat. Biol Pharm Bull 17:1535–1542

    PubMed  CAS  Google Scholar 

  • Oz HS, Chen TS, Nagasawa H (2007) Comparative efficacies of 2 cysteine prodrugs and a glutathione delivery agent in a colitis model. Transl Res 150(2):122–129

    Article  PubMed  CAS  Google Scholar 

  • Ponten J, Macintyre EH (1968) Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand 74:465–486

    Article  PubMed  CAS  Google Scholar 

  • Qusti S, Parsons RB, Abouglila KDH, Waring RH, Williams AC, Ramsden DB (2000) Development of in vitro model for cysteine dioxygenase expression in the brain. Cell Biol Toxicol 16:243–255

    Article  PubMed  CAS  Google Scholar 

  • Roberts JC, Nagasawa HT, Zera RT, Fricke RF, Goon DJW (1987) Prodrugs of l-cysteine as protective agents against acetaminophen-induced hepatotoxicity. 2-(polyhydroxyalkyl)- and 2-(polyacetoxyalkyl)thiazolidine-4(R)-carb oxylic acids. J Med Chem 30:1891–1896

    Article  PubMed  CAS  Google Scholar 

  • Roberts JC, Koch KE, Detrick SR, Warters RL, Lubec G (1995) Thiazolidine prodrugs of cysteamine and cysteine as radioprotective agents. Radiat Res 143:203–213

    Article  PubMed  CAS  Google Scholar 

  • Shanker G, Allen JW, Mutkus LA, Aschner M (2001) The uptake of cysteine in cultured primary astrocytes and neurones. Brain Res 902:156–163

    Article  PubMed  CAS  Google Scholar 

  • Shaw JP, Chou IN (1986) Elevation of intracellular glutathione content associated with mitogenic stimulation of quiescent fibroblasts. J Cell Physiol 129:193–198

    Article  PubMed  CAS  Google Scholar 

  • Sőrbo B (1955) Rhodanese. Methods Enzymol 2:334–337

    Article  Google Scholar 

  • Stavrovskaya AA (2000) Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry (Mosc) 65:95–106

    CAS  Google Scholar 

  • Suthanthiran M, Anderson ME, Sharma VK, Meister A (1990) Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci USA 87:3343–3347

    Article  PubMed  CAS  Google Scholar 

  • Szczepkowski TW, Wood JL (1967) The cystathionase-rhodanese system. Biochim Biophys Acta 139:469–478

    PubMed  CAS  Google Scholar 

  • Terradez P, Asensi M, Lasso delareza MC, Puertes IR, Vina J, Estrela JM (1993) Depletion of tumor glutathione in vivo by buthionine sulfoximine: modulation by the rate of cellular proliferation and inhibition of cancer growth. Biochem J 292:477–483

    PubMed  CAS  Google Scholar 

  • Toohey JI (1989) Sulphane sulphur in biological systems: a possible regulatory role. Biochem J 264:625–632

    PubMed  CAS  Google Scholar 

  • Ubuka T, Yuasa S, Ishimoto Y, Shimomura M (1977) Desulfuration of l-cysteine through transamination and transsulfuration in rat liver. Physiol Chem Phys 9:241–246

    PubMed  CAS  Google Scholar 

  • Ubuka T, Okada A, Nakamura H (2008) Production of hypotaurine from l-cysteinesulfinate by rat liver mitochondria. Amino acids 35(1):53–58

    Article  PubMed  CAS  Google Scholar 

  • Valentine WN, Frankenfeld JK (1974) 3-Mercaptopyruvate sulfurtransferase (E.C.2.8.1.2): a simple assay adapted to human blood cells. Clin Chim Acta 51:205–210

    Article  PubMed  CAS  Google Scholar 

  • Westley J, Adler H, Westley L, Nishida C (1983) The sulfurtransferases. Fundam Appl Toxicol 3:377–382

    Article  PubMed  CAS  Google Scholar 

  • Wood JL (1987) Sulfane sulfur. In: Jakoby WB, Griffith OW (eds) Methods in enzymology, vol 143. Academic Press, San Diego, pp 25–29

  • Wróbel M, Jurkowska H, Śliwa L, Srebro Z (2004) Sulfurtransferases and cyanide detoxification in mouse liver, kidney and brain. Toxicol Mech Methods 14:331–337

    Article  PubMed  Google Scholar 

  • Yoshida K, Hirokawa J, Tagami S, Kawakami Y, Urata Y, Kondo T (1995) Weakened cellular scavenging activity against oxidative stress in diabetes mellitus: regulation of glutathione synthesis and efflux. Diabetologia 38:201–210

    Article  PubMed  CAS  Google Scholar 

  • Zmuda J, Friedenson B (1983) Changes in intracellular glutathione pool levels in stimulated and unstimulated lymphocytes in the presence of 2-mercaptoethanol or cysteine. J Immunol 130:362–364

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Polish Committee for Scientific Research (KBN) K/ZDS/000450 and K/ZBW/000147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wróbel.

Additional information

This article is part of the Special Issue on Sulfur- and Seleno-containing Amino Acids.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurkowska, H., Uchacz, T., Roberts, J. et al. Potential therapeutic advantage of ribose-cysteine in the inhibition of astrocytoma cell proliferation. Amino Acids 41, 131–139 (2011). https://doi.org/10.1007/s00726-010-0593-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0593-4

Keywords

Navigation