Skip to main content
Log in

Incorporation of post-translational modified amino acids as an approach to increase both chemical and biological diversity of conotoxins and conopeptides

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Bioactive peptides from Conus venom contain a natural abundance of post-translational modifications that affect their chemical diversity, structural stability, and neuroactive properties. These modifications have continually presented hurdles in their identification and characterization. Early endeavors in their analysis relied on classical biochemical techniques that have led to the progressive development and use of novel proteomic-based approaches. The critical importance of these post-translationally modified amino acids and their specific assignment cannot be understated, having impact on their folding, pharmacological selectivity, and potency. Such modifications at an amino acid level may also provide additional insight into the advancement of conopeptide drugs in the quest for precise pharmacological targeting. To achieve this end, a concerted effort between the classical and novel approaches is needed to completely elucidate the role of post-translational modifications in conopeptide structure and dynamics. This paper provides a reflection in the advancements observed in dealing with numerous and multiple post-translationally modified amino acids within conotoxins and conopeptides and provides a summary of the current techniques used in their identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Aph:

4-Aminophenylalanine

Abu:

α-Aminobutyric acid

Gla:

γ-Carboxy glutamic acid

CRS:

γ-Carboxylation recognition sequence

αα:

Amino acid

CID:

Collision-induced desorption

Da:

Dalton

KD :

Dissociation constant

ESI–MS:

Electrospray ionization mass spectrometry

ER:

Endoplasmic reticulum

LSI–MS:

Laser spray ionization

MS:

Mass spectrometry

MALDI–MS:

Matrix assisted laser desorption ionization mass spectrometry

MALDI–TOF–MS:

Matrix assisted laser desorption ionization time-of-flight mass spectrometry

nAChR:

Nicotinic acetylcholine receptor

PPI:

Peptidylprolyl isomerase

PFA:

Performic acid

pKa :

Logarithmic acid dissociation constant

PSD:

Post-source decay

PTM:

Post-translational modification

PDI:

Protein disulfide isomerase

RP–HPLC:

Reverse phase high performance liquid chromatography

SPPS:

Solid phase peptide synthesis

TCEP:

Tris(2-carboxyethyl) phosphine

XRC:

X-ray crystallography

References

  • Adams DJ, Alewood PF, Craik DJ, Drinkwater RD, Lewis RJ (1999) Conotoxins and their potential pharmaceutical applications. Drug Dev Res 46(3–4):219–234

    Article  CAS  Google Scholar 

  • Aguilar MB, López-Vera E, Ortiz E, Becerril B, Possani LD, Olivera BM, Heimer de la Cotera EP (2005) A novel conotoxin from Conus delessertii with posttranslationally modified lysine residues†. Biochemistry 44(33):11130–11136. doi:10.1021/bi050518l

    Article  CAS  PubMed  Google Scholar 

  • Aguilar MB, Luna-Ramirez KS, Echeverria D, Falcon A, Olivera BM, Heimer de la Cotera EP, Maillo M (2008) Conorfamide-Sr2, a gamma-carboxyglutamate-containing FMRFamide-related peptide from the venom of Conus spurius with activity in mice and mollusks. Peptides 29(2):186–195. doi:10.1016/j.peptides.2007.09.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aktimur A, Gabriel MA, Gailani D, Toomey JR (2003) The factor IX gamma-carboxyglutamic acid (Gla) domain is involved in interactions between factor IX and factor XIa. J Biol Chem 278(10):7981–7987. doi:10.1074/jbc.M212748200

    Article  CAS  PubMed  Google Scholar 

  • Alewood D, Birinyi-Strachan LC, Pallaghy PK, Norton RS, Nicholson GM, Alewood PF (2003) Synthesis and characterization of delta-atracotoxin-Ar1a, the lethal neurotoxin from venom of the Sydney funnel-web spider (Atrax robustus). Biochemistry 42(44):12933–12940. doi:10.1021/bi030091n

    Article  CAS  PubMed  Google Scholar 

  • Armishaw CJ, Alewood PF (2005) Conotoxins as research tools and drug leads. Curr Prot Pept Sci 6(3):221–240

    Article  CAS  Google Scholar 

  • Armishaw CJ, Daly NL, Nevin ST, Adams DJ, Craik DJ, Alewood PF (2006) Alpha-selenoconotoxins, a new class of potent alpha7 neuronal nicotinic receptor antagonists. J Biol Chem 281(20):14136–14143. doi:10.1074/jbc.M512419200

    Article  CAS  PubMed  Google Scholar 

  • Armishaw CJ, Singh N, Medina-Franco JL, Clark RJ, Scott KC, Houghten RA, Jensen AA (2010) A synthetic combinatorial strategy for developing-Conotoxin analogs as potent 7 nicotinic acetylcholine receptor antagonists. J Biol Chem 285(3):1809–1821. doi:10.1074/jbc.M109.071183

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay PK, Colledge CJ, Walker CS, Zhou LM, Hillyard DR, Olivera BM (1998) Conantokin-G precursor and its role in gamma-carboxylation by a vitamin K-dependent carboxylase from a Conus snail. J Biol Chem 273(10):5447–5450

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay PK, Garrett JE, Shetty RP, Keate T, Walker CS, Olivera BM (2002) gamma-Glutamyl carboxylation: an extracellular posttranslational modification that antedates the divergence of molluscs, arthropods, and chordates. Proc Natl Acad Sci USA 99(3):1264–1269. doi:10.1073/pnas.022637099

    Article  CAS  PubMed  Google Scholar 

  • Begley GS, Furie BC, Czerwiec E, Taylor KL, Furie GL, Bronstein L, Stenflo J, Furie B (2000) A conserved motif within the vitamin K-dependent carboxylase gene is widely distributed across animal phyla. J Biol Chem 275(46):36245–36249. doi:10.1074/jbc.M003944200

    Article  CAS  PubMed  Google Scholar 

  • Bhatia S, Kil YJ, Ueberheide B, Chait BT, Tayo L, Cruz L, Lu B, Yates JR, Bern M (2012) Constrained De Novo Sequencing of Conotoxins. J Proteome Res 11(8):4191–4200. doi:10.1021/pr300312h

    Article  CAS  PubMed  Google Scholar 

  • Bingham JP, Broxton NM, Livett BG, Down JG, Jones A, Moczydlowski EG (2005) Optimizing the connectivity in disulfide-rich peptides: α-conotoxin SII as a case study. Anal Biochem 338(1):48–61. doi:10.1016/j.ab.2004.10.001

    Article  CAS  PubMed  Google Scholar 

  • Bingham JP, Mitsunaga E, Bergeron ZL (2010) Drugs from slugs–past, present and future perspectives of omega-conotoxin research. Chem Biol Interact 183(1):1–18. doi:10.1016/j.cbi.2009.09.021

    Article  CAS  PubMed  Google Scholar 

  • Bingham JP, Andrews EA, Kiyabu SM, Cabalteja CC (2012) Drugs from slugs. Part II- conopeptide bioengineering. Chem Biol Interact 200(2–3):92–113. doi:10.1016/j.cbi.2012.09.021

    Article  CAS  PubMed  Google Scholar 

  • Bondebjerg J, Grunnet M, Jespersen T, Meldal M (2003) Solid-phase synthesis and biological activity of a thioether analogue of conotoxin G1. ChemBioChem 4(2–3):186–194

    Article  CAS  PubMed  Google Scholar 

  • Buczek O, Bulaj G, Olivera BM (2005a) Conotoxins and the posttranslational modification of secreted gene products. Cell Mol Life Sci 62(24):3067–3079. doi:10.1007/s00018-005-5283-0

    Article  CAS  PubMed  Google Scholar 

  • Buczek O, Yoshikami D, Bulaj G, Jimenez EC, Olivera BM (2005b) Post-translational amino acid isomerization: a functionally important D-amino acid in an excitatory peptide. J Biol Chem 280(6):4247–4253. doi:10.1074/jbc.M405835200

    Article  CAS  PubMed  Google Scholar 

  • Buczek O, Yoshikami D, Watkins M, Bulaj G, Jimenez EC, Olivera BM (2005c) Characterization of D-amino-acid-containing excitatory conotoxins and redefinition of the I-conotoxin superfamily. FEBS J 272(16):4178–4188. doi:10.1111/j.1742-4658.2005.04830.x

    Article  CAS  PubMed  Google Scholar 

  • Buczek O, Jimenez EC, Yoshikami D, Imperial JS, Watkins M, Morrison A, Olivera BM (2008) I(1)-superfamily conotoxins and prediction of single D-amino acid occurrence. Toxicon 51(2):218–229. doi:10.1016/j.toxicon.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  • Bulaj G, Buczek O, Goodsell I, Jimenez EC, Kranski J, Nielsen JS, Garrett JE, Olivera BM (2003) Efficient oxidative folding of conotoxins and the radiation of venomous cone snails. Proc Natl Acad Sci USA 100(Suppl 2):14562–14568

    Article  CAS  PubMed  Google Scholar 

  • Chelius D, Jing K, Lueras A, Rehder DS, Dillon TM, Vizel A, Rajan RS, Li T, Treuheit MJ, Bondarenko PV (2006) Formation of pyroglutamic acid from N-terminal glutamic acid in immunoglobulin gamma antibodies. Anal Chem 78(7):2370–2376. doi:10.1021/ac051827k

    Article  CAS  PubMed  Google Scholar 

  • Chun JB, Baker MR, Kim do H, Leroy M, Toribo P, Bingham JP (2012) Cone snail milked venom dynamics: a quantitative study of Conus purpurascens. Toxicon 60(1):83–94. doi:10.1016/j.toxicon.2012.03.019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Craig AG, Jimenez EC, Dykert J, Nielsen DB, Gulyas J, Abogadie FC, Porter J, Rivier JE, Cruz LJ, Olivera BM, McIntosh JM (1997) A novel post-translational modification involving bromination of tryptophan. J Biol Chem 272(8):4689–4698. doi:10.1074/jbc.272.8.4689

    Article  CAS  PubMed  Google Scholar 

  • Craig AG, Zafaralla G, Cruz LJ, Santos AD, Hillyard DR, Dykert J, Rivier JE, Gray WR, Imperial J, DelaCruz RG, Sporning A, Terlau H, West PJ, Yoshikami D, Olivera BM (1998) An O-glycosylated neuroexcitatory Conus peptide†. Biochemistry 37(46):16019–16025. doi:10.1021/bi981690a

    Article  CAS  PubMed  Google Scholar 

  • Craig A, Norberg T, Griffin D, Hoeger C, Akhtar M, Schmidt K, Low W, Dykert J, Richelson E, Navarro V, Mazella J, Watkins M, Hillyard D, Imperial J, Cruz L, Olivera B (1999) Contulakin-G, an O-glycosylated invertebrate neurotensin. J Biol Chem 13752–13759

  • Craig AG, Bandyopadhyay P, Olivera BM (1999b) Post-translationally modified neuropeptides from Conus venoms. Eur J Biochem 264(2):271–275. doi:10.1046/j.1432-1327.1999.00624.x

    Article  CAS  PubMed  Google Scholar 

  • Craig AG, Park M, Fischer WH, Kang J, Compain P, Piller F (2001) Enzymatic glycosylation of contulakin-G, a glycopeptide isolated from Conus venom, with a mammalian ppGalNAc-transferase. Toxicon 39(6):809–815

    Article  CAS  PubMed  Google Scholar 

  • Craik DJ, Adams DJ (2007) Chemical modification of conotoxins to improve stability and activity. ACS Chem Biol 2(7):457–468. doi:10.1021/cb700091j

    Article  CAS  PubMed  Google Scholar 

  • Czerwiec E, Begley GS, Bronstein M, Stenflo J, Taylor K, Furie BC, Furie B (2002) Expression and characterization of recombinant vitamin K-dependent gamma-glutamyl carboxylase from an invertebrate, Conus textile. Eur J Biochem 269(24):6162–6172

    Article  CAS  PubMed  Google Scholar 

  • Czerwiec E, Kalume DE, Roepstorff P, Hambe B, Furie B, Furie BC, Stenflo J (2006) Novel gamma-carboxyglutamic acid-containing peptides from the venom of Conus textile. FEBS J 273(12):2779–2788. doi:10.1111/j.1742-4658.2006.05294.x

    Article  CAS  PubMed  Google Scholar 

  • de Araujo AD, Callaghan B, Nevin ST, Daly NL, Craik DJ, Moretta M, Hopping G, Christie MJ, Adams DJ, Alewood PF (2011) Total synthesis of the analgesic conotoxin MrVIB through selenocysteine-assisted folding. Angew Chem Int Ed Engl 50(29):6527–6529. doi:10.1002/anie.201101642

    Article  PubMed  CAS  Google Scholar 

  • Donevan SD, McCabe RT (2000) Conantokin G is an NR2B-selective competitive antagonist of N-methyl-D-aspartate receptors. Mol Pharmacol 58(3):614–623

    CAS  PubMed  Google Scholar 

  • Durieux C, Belleney J, Lallemand J-Y, Roques BP, Fournie-Zaluski M-C (1983) 1H NMR conformational study of sulfated and non-sulfated cholecystokinin fragment CCK27–33: influence of the sulfate group on the peptide folding. Biochem Biophys Res Commun 114(2):705–712. doi:10.1016/0006-291X(83)90838-0

    Google Scholar 

  • Dutton JL, Bansal PS, Hogg RC, Adams DJ, Alewood PF, Craik DJ (2002) A new level of conotoxin diversity, a non-native disulfide bond connectivity in alpha-conotoxin AuIB reduces structural definition but increases biological activity. J Biol Chem 277(50):48849–48857. doi:10.1074/jbc.M208842200

    Article  CAS  PubMed  Google Scholar 

  • Elliger CA, Richmond TA, Lebaric ZN, Pierce NT, Sweedler JV, Gilly WF (2011) Diversity of conotoxin types from Conus californicus reflects a diversity of prey types and a novel evolutionary history. Toxicon 57(2):311–322. doi:10.1016/j.toxicon.2010.12.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esmon CT, Sadowski JA, Suttie JW (1975) A new carboxylation reaction. The vitamin K-dependent incorporation of H-14-CO3- into prothrombin. J Biol Chem 250(12):4744–4748

    CAS  PubMed  Google Scholar 

  • Fainzilber M, Hasson A, Oren R, Burlingame AL, Gordon D, Spira ME, Zlotkin E (1994) New mollusc-specific alpha-conotoxins block Aplysia neuronal acetylcholine receptors. Biochemistry 33(32):9523–9529

    Article  CAS  PubMed  Google Scholar 

  • Favreau P, Krimm I, Le Gall F, Bobenrieth MJ, Lamthanh H, Bouet F, Servent D, Molgo J, Menez A, Letourneux Y, Lancelin JM (1999) Biochemical characterization and nuclear magnetic resonance structure of novel alpha-conotoxins isolated from the venom of Conus consors. Biochemistry 38(19):6317–6326. doi:10.1021/bi982817z

    Article  CAS  PubMed  Google Scholar 

  • Fischer WH, Spies J (1987) Identification of a mammalian glutarminyl cyclase converting glutaminyl into pyroglutamyl peptides. Proc Natl Acad Sci 3628–3632

  • Flinn JP, Pallaghy PK, Lew MJ, Murphy R, Angus JA, Norton RS (1999) Role of disulfide bridges in the folding, structure and biological activity of omega-conotoxin GVIA. Biochim Biophys Acta 1434(1):177–190

    Article  CAS  PubMed  Google Scholar 

  • Frank H, Nicholson GJ, Bayer E (1977) Rapid gas chromatographic separation of amino acid enantiomers with a novel chiral stationary phase. J Chromatogr Sci 15(5):174–176. doi:10.1093/chromsci/15.5.174

    Article  CAS  PubMed  Google Scholar 

  • Gerwig GJ, Hocking HG, Stöcklin R, Kamerling JP, Boelens R (2013) Glycosylation of Conotoxins. Mar Drugs 11(3):623–642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gorres KL, Raines RT (2010) Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol 45(2):106–124. doi:10.3109/10409231003627991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grant GA (2002) Synthetic peptides, II edn. Oxford University Press, New York

    Google Scholar 

  • Gray WR (1993) Disulfide structures of highly bridged peptides: a new strategy for analysis. Protein Sci 2(10):1732–1748

    Article  CAS  PubMed  Google Scholar 

  • Gray W, Hartley B (1963) The structure of a chymotryptic peptide from Pseudomonas cytochrome C-551. Biochem J 89:379

    CAS  PubMed  Google Scholar 

  • Gray WR, Luque A, Olivera BM, Barrett J, Cruz LJ (1981) Peptide toxins from Conus geographus venom. J Biol Chem 256(10):4734–4740

    CAS  PubMed  Google Scholar 

  • Green BR, Catlin P, Zhang MM, Fiedler B, Bayudan W, Morrison A, Norton RS, Smith BJ, Yoshikami D, Olivera BM, Bulaj G (2007) Conotoxins containing nonnatural backbone spacers: cladistic-based design, chemical synthesis, and improved analgesic activity. Chem Biol 14(4):9. doi:10.1016/j.chembiol.2007.02.009

    Article  CAS  Google Scholar 

  • Han Y, Huang F, Jiang H, Liu L, Wang Q, Wang Y, Shao X, Chi C, Du W, Wang C (2008) Purification and structural characterization of a D-amino acid-containing conopeptide, conomarphin, from Conus marmoreus. FEBS J 275(9):1976–1987. doi:10.1111/j.1742-4658.2008.06352.x

    Article  CAS  PubMed  Google Scholar 

  • Han TS, Zhang MM, Walewska A, Gruszczynski P, Robertson CR, Cheatham TE, Yoshikami D, Olivera BM, Bulaj G (2009) Structurally minimized mu-conotoxin analogues as sodium channel blockers: implications for designing conopeptide-based therapeutics. ChemMedChem 4(3):406–414. doi:10.1002/cmdc.200800292

    Article  CAS  PubMed  Google Scholar 

  • Hansson K, Ma X, Eliasson L, Czerwiec E, Furie B, Furie BC, Rorsman P, Stenflo J (2004) The first gamma-carboxyglutamic acid-containing contryphan. A selective L-type calcium ion channel blocker isolated from the venom of Conus marmoreus. J Biol Chem 279(31):32453–32463. doi:10.1074/jbc.M313825200

    Article  CAS  PubMed  Google Scholar 

  • Hargittai B, Sole NA, Groebe DR, Abramson SN, Barany G (2000) Chemical syntheses and biological activities of lactam analogues of alpha-conotoxin SI. J Med Chem 43(25):4787–4792

    Article  CAS  PubMed  Google Scholar 

  • Hashiguchi T, Sakakibara Y, Hara Y, Shimohira T, Kurogi K, Akashi R, Liu MC, Suiko M (2013) Identification and characterization of a novel kaempferol sulfotransferase from Arabidopsis thaliana. Biochem Biophys Res Commun 434(4):829–835. doi:10.1016/j.bbrc.2013.04.022

    Article  CAS  PubMed  Google Scholar 

  • Hocking HG, Gerwig GJ, Dutertre S, Violette A, Favreau P, Stöcklin R, Kamerling JP, Boelens R (2013) Structure of the O-glycosylated conopeptide CcTx from Conus consors venom. Chem A Eur J 19(3):870–879. doi:10.1002/chem.201202713

    Article  CAS  Google Scholar 

  • Hogg RC, Miranda LP, Craik DJ, Lewis RJ, Alewood PF, Adams DJ (1999) Single amino acid substitutions in α-conotoxin PnIA shift selectivity for subtypes of the mammalian neuronal nicotinic acetylcholine receptor. J Biol Chem 274(51):36559–36564

    Article  CAS  PubMed  Google Scholar 

  • Huebner VD, Jiang RL, Lee TD, Legesse K, Walsh JH, Shively JE, Chew P, Azumi T, Reeve JR Jr (1991) Purification and structural characterization of progastrin-derived peptides from a human gastrinoma. J Biol Chem 266(19):12223–12227

    CAS  PubMed  Google Scholar 

  • Jimenez EC (2009) Conantokins: from “sleeper” activity to drug development. Philipp Sci Lett 2:60–66

    Google Scholar 

  • Jimenez EC, Craig AG, Watkins M, Hillyard DR, Gray WR, Gulyas J, Rivier JE, Cruz LJ, Olivera BM (1997) Bromocontryphan: post-translational bromination of tryptophan†. Biochemistry 36(5):989–994. doi:10.1021/bi962840p

    Article  CAS  PubMed  Google Scholar 

  • Jin A-H, Brandstaetter H, Nevin ST, Tan CC, Clark RJ, Adams DJ, Alewood PF, Craik DJ, Daly NL (2007) Structure of α-conotoxin BuIA: influences of disulfide connectivity on structural dynamics. BMC Struct Biol 7(1):28

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jin AH, Daly NL, Nevin ST, Wang CI, Dutertre S, Lewis RJ, Adams DJ, Craik DJ, Alewood PF (2008) Molecular engineering of conotoxins: the importance of loop size to alpha-conotoxin structure and function. J Med Chem 51(18):5575–5584. doi:10.1021/jm800278k

    Article  CAS  PubMed  Google Scholar 

  • Johnson DS, Martinez J, Elgoyhen AB, Heinemann SF, McIntosh JM (1995) alpha-Conotoxin ImI exhibits subtype-specific nicotinic acetylcholine receptor blockade: preferential inhibition of homomeric alpha 7 and alpha 9 receptors. Mol Pharmacol 48(2):194–199

    CAS  PubMed  Google Scholar 

  • Jones A, Bingham JP, Gehrmann J, Bond T, Loughnan M, Atkins A, Lewis RJ, Alewood PF (1996) Isolation and characterization of conopeptides by high-performance liquid chromatography combined with mass spectrometry and tandem mass spectrometry. Rapid Commun Mass Spectrom 10(1):138–143

    Article  CAS  PubMed  Google Scholar 

  • Kaas Q, Yu R, Jin AH, Dutertre S, Craik DJ (2012) ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res 40(Database issue):D325–D330. doi:10.1093/nar/gkr886

    Google Scholar 

  • Kang J, Low W, Norberg T, Meisenhelder J, Hansson K, Stenflo J, Zhou GP, Imperial J, Olivera BM, Rigby AC, Craig AG (2004) Total chemical synthesis and NMR characterization of the glycopeptide tx5a, a heavily post-translationally modified conotoxin, reveals that the glycan structure is alpha-D-Gal-(1 → 3)-alpha-D-GalNAc. Eur J Biochem 271(23–24):4939–4949. doi:10.1111/j.1432-1033.2004.04464.x

    Article  CAS  PubMed  Google Scholar 

  • Kang TS, Vivekanandan S, Jois SDS, Kini RM (2005) Effect of C-terminal amidation on folding and disulfide-pairing of α-conotoxin ImI. Angew Chem Int Ed 44(39):6333–6337. doi:10.1002/anie.200502300

    Article  CAS  Google Scholar 

  • Kang TS, Radic Z, Talley TT, Jois SD, Taylor P, Kini RM (2007) Protein folding determinants: structural features determining alternative disulfide pairing in alpha- and chi/lambda-conotoxins. Biochemistry 46(11):3338–3355. doi:10.1021/bi061969o

    Article  CAS  PubMed  Google Scholar 

  • Kapono CA, Thapa P, Cabalteja CC, Guendisch D, Collier AC, Bingham JP (2013) Conotoxin truncation as a post-translational modification to increase the pharmacological diversity within the milked venom of Conus magus. Toxicon 70:170–178. doi:10.1016/j.toxicon.2013.04.022

    Article  CAS  PubMed  Google Scholar 

  • Kasheverov IE, Zhmak MN, Khruschov AY, Tsetlin VI (2011) Design of new alpha-conotoxins: from computer modeling to synthesis of potent cholinergic compounds. Mar Drugs 9(10):1698–1714. doi:10.3390/md9101698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kehoe JW, Bertozzi CR (2000) Tyrosine sulfation: a modulator of extracellular protein-protein interactions. Chem Biol 7(3):R57–R61

    Article  CAS  PubMed  Google Scholar 

  • Khoo KK, Feng Z-P, Smith BJ, Zhang M-M, Yoshikami D, Olivera BM, Bulaj G, Norton RS (2009) Structure of the analgesic μ-conotoxin KIIIA and effects on the structure and function of disulfide deletion†‡. Biochemistry 48(6):1210–1219

    Article  CAS  PubMed  Google Scholar 

  • Khoo KK, Gupta K, Green BR, Zhang MM, Watkins M, Olivera BM, Balaram P, Yoshikami D, Bulaj G, Norton RS (2012) Distinct disulfide isomers of mu-conotoxins KIIIA and KIIIB block voltage-gated sodium channels. Biochemistry 51(49):9826–9835. doi:10.1021/bi301256s

    Article  CAS  PubMed  Google Scholar 

  • Klein RC, Prorok M, Galdzicki Z, Castellino FJ (2001) The amino acid residue at sequence position 5 in the conantokin peptides partially governs subunit-selective antagonism of recombinant N-methyl-d-aspartate receptors. J Biol Chem 276(29):26860–26867

    Article  CAS  PubMed  Google Scholar 

  • Kreil G (1997) D-amino acids in animal peptides. Annu Rev Biochem 66:337–345. doi:10.1146/annurev.biochem.66.1.337

    Article  CAS  PubMed  Google Scholar 

  • Kuyama H, Nakajima C, Nakazawa T, Nishimura O, Tsunasawa S (2009) A new approach for detecting C-terminal amidation of proteins and peptides by mass spectrometry in conjunction with chemical derivatization. Proteomics 9(16):4063–4070. doi:10.1002/pmic.200900267

    Article  CAS  PubMed  Google Scholar 

  • Langrock T, Czihal P, Hoffmann R (2006) Amino acid analysis by hydrophilic interaction chromatography coupled on-line to electrospray ionization mass spectrometry. Amino Acids 30(3):291–297. doi:10.1007/s00726-005-0300-z

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Vera E, Walewska A, Skalicky JJ, Olivera BM, Bulaj G (2008) Role of hydroxyprolines in the in vitro oxidative folding and biological activity of conotoxins†. Biochemistry 47(6):1741–1751. doi:10.1021/bi701934m

    Article  CAS  PubMed  Google Scholar 

  • Loughnan M, Bond T, Atkins A, Cuevas J, Adams DJ, Broxton NM, Livett BG, Down JG, Jones A, Alewood PF, Lewis RJ (1998) alpha-conotoxin EpI, a novel sulfated peptide from Conus episcopatus that selectively targets neuronal nicotinic acetylcholine receptors. J Biol Chem 273(25):15667–15674

    Article  CAS  PubMed  Google Scholar 

  • Loughnan ML, Nicke A, Jones A, Adams DJ, Alewood PF, Lewis RJ (2004) Chemical and functional identification and characterization of novel sulfated alpha-conotoxins from the cone snail Conus anemone. J Med Chem 47(5):1234–1241. doi:10.1021/jm031010o

    Article  CAS  PubMed  Google Scholar 

  • Loughnan ML, Nicke A, Lawrence N, Lewis RJ (2009) Novel alpha D-conopeptides and their precursors identified by cDNA cloning define the D-conotoxin superfamily. Biochemistry 48(17):3717–3729. doi:10.1021/bi9000326

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Nguyen TA, Cartier GE, Olivera BM, Yoshikami D, McIntosh JM (1999) Single-residue alteration in alpha-conotoxin PnIA switches its nAChR subtype selectivity. Biochemistry 38(44):14542–14548

    Article  CAS  PubMed  Google Scholar 

  • MacRaild CA, Illesinghe J, van Lierop BJ, Townsend AL, Chebib M, Livett BG, Robinson AJ, Norton RS (2009) Structure and activity of (2,8)-dicarba-(3,12)-cystino alpha-ImI, an alpha-conotoxin containing a nonreducible cystine analogue. J Med Chem 52(3):755–762. doi:10.1021/jm8011504

    Article  CAS  PubMed  Google Scholar 

  • Malmberg AB, Gilbert H, McCabe RT, Basbaum AI (2003) Powerful antinociceptive effects of the cone snail venom-derived subtype-selective NMDA receptor antagonists conantokins G and T. Pain 101(1–2):109–116

    Article  CAS  PubMed  Google Scholar 

  • Mandal A, Ramasamy M, Sabareesh V, Openshaw M, Krishnan K, Balaram P (2007) Sequencing of T-superfamily conotoxins from Conus virgo: pyroglutamic acid identification and disulfide arrangement by MALDI mass spectrometry. J Am Soc Mass Spectrosc 1396–1404

  • McIntosh JM, Olivera BM, Cruz L, Gray W (1984) Gamma-carboxyglutamate in a neuroactive toxin. J Biol Chem 259(23):14343–14346

    CAS  PubMed  Google Scholar 

  • McIntosh JM, Yoshikami D, Mahe E, Nielsen DB, Rivier JE, Gray WR, Olivera BM (1994) A nicotinic acetylcholine receptor ligand of unique specificity, alpha-conotoxin ImI. J Biol Chem 269(24):16733–16739

    CAS  PubMed  Google Scholar 

  • Mohammed YI, Kurogi K, Shaban AA, Xu Z, Liu MY, Williams FE, Sakakibara Y, Suiko M, Bhuiyan S, Liu MC (2012) Identification and characterization of zebrafish SULT1 ST9, SULT3 ST4, and SULT3 ST5. Aquat Toxicol 112–113:11–18. doi:10.1016/j.aquatox.2012.01.015

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Muttenthaler M, Nevin ST, Grishin AA, Ngo ST, Choy PT, Daly NL, Hu SH, Armishaw CJ, Wang CI, Lewis RJ, Martin JL, Noakes PG, Craik DJ, Adams DJ, Alewood PF (2010) Solving the alpha-conotoxin folding problem: efficient selenium-directed on-resin generation of more potent and stable nicotinic acetylcholine receptor antagonists. J Am Chem Soc 132(10):3514–3522. doi:10.1021/ja910602h

    Article  CAS  PubMed  Google Scholar 

  • Nair SS, Nilsson CL, Emmett MR, Schaub TM, Gowd KH, Thakur SS, Krishnan KS, Balaram P, Marshall AG (2006) De novo sequencing and disulfide mapping of a bromotryptophan-containing conotoxin by Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 78(23):8082–8088. doi:10.1021/ac0607764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura T, Yu Z, Fainzilber M, Burlingame AL (1996) Mass spectrometric-based revision of the structure of a cysteine-rich peptide toxin with gamma-carboxyglutamic acid, TxVIIA, from the sea snail, Conus textile. Protein Sci 5(3):524–530. doi:10.1002/pro.5560050315

    Article  CAS  PubMed  Google Scholar 

  • Nelson DL, Lehninger AL, Cox MM (2008) Lehninger principles of biochemistry. Macmillan, NY

  • Nevin ST, Clark RJ, Klimis H, Christie MJ, Craik DJ, Adams DJ (2007) Are alpha9 alpha10 nicotinic acetylcholine receptors a pain target for alpha-conotoxins? Mol Pharmacol 72(6):1406–1410. doi:10.1124/mol.107.040568

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KJ, Watson M, Adams DJ, Hammarström AK, Gage PW, Hill JM, Craik DJ, Thomas L, Adams D, Alewood PF, Lewis RJ (2002) Solution structure of μ-conotoxin PIIIA, a preferential inhibitor of persistent tetrodotoxin-sensitive sodium channels. J Biol Chem 277(30):27247–27255. doi:10.1074/jbc.M201611200

    Article  CAS  PubMed  Google Scholar 

  • Nishiuchi Y, Sakakibara S (1982) Primary and secondary structure of conotoxin GI, a neurotoxic tridecapeptide from a marine snail. FEBS Lett 148(2):260–262

    Article  CAS  PubMed  Google Scholar 

  • Noiva R, Lennarz W (1992) Protein disulfide isomerase. A multifunctional protein resident in the lumen of the endoplasmic reticulum. J Biol Chem 267(6):3553–3556

    CAS  PubMed  Google Scholar 

  • Oka T, Nakanishi A, Okada T (1975) Studies on pharmacological and biochemical properties of deamino-dicarba-[GLY-7]-oxytocin (Y-5350). Jpn J Pharmacol 25(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Önnerfjord P, Heathfield TF, Heinegård D (2004) Identification of tyrosine sulfation in extracellular leucine-rich repeat proteins using mass spectrometry. J Biol Chem 279(1):26–33. doi:10.1074/jbc.M308689200

    Article  PubMed  CAS  Google Scholar 

  • Pegoraro S, Fiori S, Rudolph-Bohner S, Watanabe TX, Moroder L (1998) Isomorphous replacement of cystine with selenocystine in endothelin: oxidative refolding, biological and conformational properties of [Sec3, Sec11, Nle7]-endothelin-1. J Mol Biol 284(3):779–792. doi:10.1006/jmbi.1998.2189

    Article  CAS  PubMed  Google Scholar 

  • Pisarewicz K, Mora D, Pflueger FC, Fields GB, Marí F (2005) Polypeptide chains containing d-γ-hydroxyvaline. J Am Chem Soc 127(17):6207–6215. doi:10.1021/ja050088m

    Article  CAS  PubMed  Google Scholar 

  • Price PA, Otsuka AA, Poser JW, Kristaponis J, Raman N (1976) Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci USA 73(5):1447–1451

    Article  CAS  PubMed  Google Scholar 

  • Price-Carter M, Gray WR, Goldenberg DP (1996) Folding of ω-conotoxins. 2. Influence of precursor sequences and protein disulfide isomerase†. Biochemistry 35(48):15547–15557. doi:10.1021/bi9615755

    Article  CAS  PubMed  Google Scholar 

  • Quinton L, Gilles N, De Pauw E (2009) TxXIIIA, an atypical homodimeric conotoxin found in the Conus textile venom. J Proteomics 72(2):219–226. doi:10.1016/j.jprot.2009.01.021

    Article  CAS  PubMed  Google Scholar 

  • Rigby AC, Lucas-Meunier E, Kalume DE, Czerwiec E, Hambe B, Dahlqvist I, Fossier P, Baux G, Roepstorff P, Baleja JD, Furie BC, Furie B, Stenflo J (1999) A conotoxin from Conus textile with unusual posttranslational modifications reduces presynaptic Ca2+ influx. Proc Natl Acad Sci 96(10):5758–5763. doi:10.1073/pnas.96.10.5758

    Article  CAS  PubMed  Google Scholar 

  • Sabatier JM, Lecomte C, Mabrouk K, Darbon H, Oughideni R, Canarelli S, Rochat H, Martin-Eauclaire MF, van Rietschoten J (1996) Synthesis and characterization of leiurotoxin I analogs lacking one disulfide bridge: evidence that disulfide pairing 3-21 is not required for full toxin activity. Biochemistry 35(33):10641–10647. doi:10.1021/bi960533dbi960533d

    Article  CAS  PubMed  Google Scholar 

  • Safavi-Hemami H, Bulaj G, Olivera BM, Williamson NA, Purcell AW (2010) Identification of Conus peptidylprolyl cis-trans isomerases (PPIases) and assessment of their role in the oxidative folding of conotoxins. J Biol Chem 285(17):12735–12746. doi:10.1074/jbc.M109.078691

    Article  CAS  PubMed  Google Scholar 

  • Santos AD, McIntosh JM, Hillyard DR, Cruz LJ, Olivera BM (2004) The A-superfamily of conotoxins: structural and functional divergence. J Biol Chem 279(17):17596–17606. doi:10.1074/jbc.M309654200

    Article  CAS  PubMed  Google Scholar 

  • Shworak NW, Liu J, Petros LM, Zhang L, Kobayashi M, Copeland NG, Jenkins NA, Rosenberg RD (1999) Multiple isoforms of heparan sulfate D-glucosaminyl 3-O-sulfotransferase. Isolation, characterization, and expression of human cDNAs and identification of distinct genomic loci. J Biol Chem 274(8):5170–5184

    Article  CAS  PubMed  Google Scholar 

  • Soltwisch J, Dreisewerd K (2010) Discrimination of isobaric Leucine and Isoleucine residues and analysis of post-translational modifications in peptides by MALDI in-source decay mass spectrometry combined with collisional cooling. Anal Chem 82(13):5628–5635. doi:10.1021/ac1006014

    Article  CAS  PubMed  Google Scholar 

  • Song J, Gilquin B, Jamin N, Drakopoulou E, Guenneugues M, Dauplais M, Vita C, Menez A (1997) NMR solution structure of a two-disulfide derivative of charybdotoxin: structural evidence for conservation of scorpion toxin alpha/beta motif and its hydrophobic side chain packing. Biochemistry 36(13):3760–3766. doi:10.1021/bi962720hbi962720h

    Article  CAS  PubMed  Google Scholar 

  • Stanley TB, Stafford DW, Olivera BM, Bandyopadhyay PK (1997) Identification of a vitamin K-dependent carboxylase in the venom duct of a Conus snail. FEBS Lett 407(1):85–88

    Article  CAS  PubMed  Google Scholar 

  • Steen H, Mann M (2002) Analysis of bromotryptophan and hydroxyproline modifications by high-resolution, high-accuracy precursor ion scanning utilizing fragment ions with mass-deficient mass tags. Anal Chem 74(24):6230–6236

    Article  CAS  PubMed  Google Scholar 

  • Stenflo J (1974) Vitamin K and the biosynthesis of prothrombin IV. Vitamin K and the biosynthesis of prothrombin. IV. Isolation of peptides containing prosthetic groups from normal prothrombin and the corresponding peptides from dicoumarol-induced prothrombin. J Biol Chem 249(17):5527–5535

    CAS  PubMed  Google Scholar 

  • Stenflo J, Fernlund P, Egan W, Roepstorff P (1974) Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc Natl Acad Sci USA 71(7):2730–2733

    Article  CAS  PubMed  Google Scholar 

  • Tajima M, Iida T, Yoshida S, Komatsu K, Namba R, Yanagi M, Noguchi M, Okamoto H (1990) The reaction product of peptidylglycine alpha-amidating enzyme is a hydroxyl derivative at alpha-carbon of the carboxyl-terminal glycine. J Biol Chem 265(17):9602–9605

    CAS  PubMed  Google Scholar 

  • Teichert RW, Jimenez EC, Twede V, Watkins M, Hollmann M, Bulaj G, Olivera BM (2007) Novel conantokins from Conus parius venom are specific antagonists of N-methyl-D-aspartate receptors. J Biol Chem 282(51):36905–36913

    Article  CAS  PubMed  Google Scholar 

  • Terlau H, Olivera BM (2004) Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev 84(1):41–68

    Article  CAS  PubMed  Google Scholar 

  • Thakur SS, Balaram P (2007) Rapid mass spectral identification of contryphans. Detection of characteristic peptide ions by fragmentation of intact disulfide-bonded peptides in crude venom. Rapid Commun Mass Spectrom 21(21):3420–3426. doi:10.1002/rcm.3225

    Article  CAS  PubMed  Google Scholar 

  • Walker CS, Steel D, Jacobsen RB, Lirazan MB, Cruz LJ, Hooper D, Shetty R, DelaCruz RC, Nielsen JS, Zhou LM, Bandyopadhyay P, Craig AG, Olivera BM (1999) The T-superfamily of conotoxins. J Biol Chem 274(43):30664–30671. doi:10.1074/jbc.274.43.30664

    Article  CAS  PubMed  Google Scholar 

  • Walter R, du Vigneaud V (1966) 1-Deamino-1, 6-L-selenocystine-oxytocin, a highly potent isolog of 1-Deamino-oxytocin1. J Am Chem Soc 88(6):1331–1332

    Article  CAS  Google Scholar 

  • Wang ZQ, Han YH, Shao XX, Chi CW, Guo ZY (2007) Molecular cloning, expression and characterization of protein disulfide isomerase from Conus marmoreus. FEBS J 274(18):4778–4787

    Article  CAS  PubMed  Google Scholar 

  • Weinshilboum RM, Otterness DM, Aksoy IA, Wood TC, Her C, Raftogianis RB (1997) Sulfation and sulfotransferases 1: sulfotransferase molecular biology: cDNAs and genes. FASEB J 11(1):3–14

    CAS  PubMed  Google Scholar 

  • Wolfender JL, Chu F, Ball H, Wolfender F, Fainzilber M, Baldwin MA, Burlingame AL (1999) Identification of tyrosine sulfation in Conus pennaceus conotoxins alpha-PnIA and alpha-PnIB: further investigation of labile sulfo- and phosphopeptides by electrospray, matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure MALDI mass spectrometry. J Mass Spectrom 34(4):447–454. doi:10.1002/(sici)1096-9888(199904)34:4<447:aid-jms801>3.0.co;2-1

    Article  CAS  PubMed  Google Scholar 

  • Woodward SR, Cruz LJ, Olivera BM, Hillyard DR (1990) Constant and hypervariable regions in conotoxin propeptides. EMBO J 1015–1020

  • Wu SM, Cheung WF, Frazier D, Stafford DW (1991) Cloning and expression of the cDNA for human gamma-glutamyl carboxylase. Science 254(5038):1634–1636

    Article  CAS  PubMed  Google Scholar 

  • Wu XC, Zhou M, Peng C, Shao XX, Guo ZY, Chi CW (2010) Novel conopeptides in a form of disulfide-crosslinked dimer. Peptides 31(6):1001–1006. doi:10.1016/j.peptides.2010.03.010

    Article  CAS  PubMed  Google Scholar 

  • Zhang M-M, Fiedler B, Green BR, Catlin P, Watkins M, Garrett JE, Smith BJ, Yoshikami D, Olivera BM, Bulaj G (2006) Structural and functional diversities among μ-conotoxins targeting TTX-resistant sodium channels†. Biochemistry 45(11):3723–3732. doi:10.1021/bi052162j

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the past and continued financial support from USDA TSTAR (# 2009-34135-20067) & HATCH (HAW00595-R)(J-P.B) which have helped expand our own horizons in understanding the importance of conotoxin/conopeptide post-translational modifications.

Conflict of interest

The authors state that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon-Paul Bingham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espiritu, M.J., Cabalteja, C.C., Sugai, C.K. et al. Incorporation of post-translational modified amino acids as an approach to increase both chemical and biological diversity of conotoxins and conopeptides. Amino Acids 46, 125–151 (2014). https://doi.org/10.1007/s00726-013-1606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1606-x

Keywords

Navigation