Skip to main content

Advertisement

Log in

Polyamines: therapeutic perspectives in oxidative stress and inflammatory diseases

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Polyamines are naturally occurring aliphatic compounds, particularly essential elements for biological functions. These compounds play a central role in regulating molecular pathways which are responsible for cellular proliferation, growth, and differentiation. Importantly, excessive polyamine catabolism can lead to a prominent source of oxidative stress which increases inflammatory response and thought to be involved in several diseases including stroke, renal failure, neurological disease, liver disease, and even cancer. Moreover, polyamine supplementation increases life span in model organisms and may encounter oxidative stress via exerting its potential anti-oxidant and anti-inflammatory properties. The revealed literature indicates that an emerging role of polyamine biosynthetic pathway could be a novel target for drug development against inflammatory diseases. In this review, we expand the knowledge on the metabolism of polyamines, and its anti-oxidant and anti-inflammatory activities which might have future implications against inflammatory diseases in humans and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADC:

Arginine decarboxylase

TNFα:

Tumor necrosis factor α

ODC:

Ornithine decarboxylase

SRM:

Spermidine synthase

SMS:

Spermine synthase

AMD1:

Adenosylmethionine decarboxylase

SAM:

Decarboxylates S-adenosylmethionine

TGS2:

Transglutaminases

eIF-5A:

Eukaryotic initiation factor 5A

eEF1A:

Eukaryotic translation elongation factor 1A

BASO:

Bovine Albumin serum oxidase enzyme

Nrf2:

Nuclear factor (erythroid-derived 2)-like 2

LPS:

Lipopolysaccharide

ROS:

Reactive oxygen species

PI3K/Akt:

The phosphoinositide 3-kinase (PI3K)/serine/threonine-specific protein kinase (Protein kinase-B)

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

IEC-6:

Intestinal epithelial cell line-6

SSAT:

Spermidine/spermine N1-acetyltransferase

MeSpd:

α-Methylspermidine

CECs:

Colonic epithelial cells

DSS:

Dextran sodium sulfate

EBR:

Epibrassinolide

AZI:

Antizyme inhibitor

FAD:

Flavin adenine dinucleotide

NSCLC:

(non-small cell lung cancers)

References

  • Agostinelli E, Arancia G, Dalla Vedova L, Belli F, Marra M, Salvi M, Toninello A (2004) The biological functions of polyamine oxidation products by amine oxidases: perspectives of clinical applications. Amino Acids 27:347–358

    Article  CAS  PubMed  Google Scholar 

  • Ahn SK, Hong S, Park YM, Lee WT, Park KA, Lee JE (2011) Effects of agmatine on hypoxic microglia and activity of nitric oxide synthase. Brain Res 1373:48–54

    Article  CAS  PubMed  Google Scholar 

  • Albeck S, Dym O, Unger T, Snapir Z (2008) Crystallographic and biochemical studies revealing the structural basis for antizyme inhibitor function. Protein Sci 17:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andiara E, Egea Javier, Buendía Izaskun (2015) Agmatine induces Nrf2 and protects against corticosterone effects in hippocampal neuronal cell line. Mol Neurobiol 51:1504–1519

    Article  Google Scholar 

  • Arancia G, Calcabrini A, Marra M, Crateri P, Artico M, Martone A, Martelli F, Agostinelli E (2004) Mitochondrial alterations induced by serum amine oxidase and spermine on human multidrug resistant tumor cells. Amino Acids 26:273–282

    Article  CAS  PubMed  Google Scholar 

  • Babbar N, Casero RA (2006) Tumor necrosis factor-alpha increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: a potential mechanism for inflammation-induced carcinogenesis. Cancer Res 66:11125–11130

    Article  CAS  PubMed  Google Scholar 

  • Babbar N, Gerner EW, Casero RA Jr (2006) Induction of spermidine/spermine N1-acetyltransferase (SSAT) by aspirin in Caco-2 colon cancer cells. Biochem J 394:317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbieri HE, Lindvall C (2005) Swedish nutrition recommendation objectified (SNO)-basis for general advice on food consumption for healthy adults. http://www.slv.se/upload/dokument/rapporter/mat_naring/Report_20_2005_SNO_eng.pdf

  • Bardócz S, Duguid TJ, Brown DS, Grant G (1995) The importance of dietary polyamines in cell regeneration and growth. Br J Nutr 73(6):819–828

    Article  PubMed  Google Scholar 

  • Bauza T, Kelly MT, Blaise A (2007) Study of polyamines and their precursor amino acids in Grenache noir and Syrah grapes and wine of the Rhone Valley. Food Chem 105:405–413

    Article  CAS  Google Scholar 

  • Beppu T, Shirahata A, Takahashi N, Hosoda H, Samejima K (1995) Specific depletion of spermidine and spermine in HTC cells treated with inhibitors of aminopropyltransferases. J Biochem 117:339–345

    Article  CAS  PubMed  Google Scholar 

  • Bergeron C, Bansard JY, Le Moine P, Bouet F, Goasguen JE, Moulinoux JP, Le Gall E, Catros-Quemener V (1997) Erythrocyte spermine levels: a prognostic parameter in childhood common acute lymphoblastic leukemia. Leukemia 11:31–36

    Article  CAS  PubMed  Google Scholar 

  • Casero RA, Pegg AE (2009) Polyamine catabolism and disease. Biochem J 421:323–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai J, Luo L, Hou F, Fan X, Jing Y, Ma W, Tang W, Yang X, Zhu J, Kang W, Yan J, Liang H (2016) Agmatine reduces lipopolysaccharide-mediated oxidant response via activating PI3K/Akt pathway and up-regulating Nrf2 and HO-1 expression in macrophages. PLoS ONE 11(9):e0163634

    Article  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay MK, Tabor CW and Tabor H (2003) Polyamines protect Escherichia coli cell from the toxic effect of oxygen. Proc Natl Acad Sci USA 100:2261. http://www.ncbi.nlm.nih.gov/pubmed/15784477

  • Checkoway H, Franklin GM, Costa-Mallen P, Smith-Weller T, Dilley J, Swansons PD, Costa LG (1998) A genetic polymorphism of MAO-B modifies the association of cigarette smoking and Parkinson’s disease. Neurology 50:1458–1461

    Article  CAS  PubMed  Google Scholar 

  • Childs AC, Mehta DJ, Gerner EW (2003) Polyamine-dependent gene expression. Cell Mol Life Sci 60:1394–1406

    Article  CAS  PubMed  Google Scholar 

  • Choi YH, Park HY (2012) Anti-inflammatory effects of spermidine in lipopolysaccharide-stimulated BV2 microglial cells. J Biom Sci 19:31

    Article  CAS  Google Scholar 

  • Coleman CS, Hu G, Pegg AE (2004) Putrescine biosynthesis in mammalian tissues. Biochem J 379(3):849–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C (1993) A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,50,6,60-tetrachloro-1,10,3,30-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197:40–45

    Article  CAS  PubMed  Google Scholar 

  • D’Eletto M, Farrace MG, Rossin F, Strappazzon F, Giacomo GD, Cecconi F, Melino G, Sepe S, Moreno S, Fimia GM, Falasca L, Nardacci R, Piacentini M (2012) Type 2 transglutaminase is involved in the autophagy-dependent clearance of ubiquitinated proteins. Cell Death Differ 19(7):1228–1238

    Article  PubMed  PubMed Central  Google Scholar 

  • Danzin C, Marchal P, Casara P (1990) Irreversible inhibition of rat S -adenosylmethionine decarboxylase by 5-{[(Z)-4-amino-2-butenyl] methylamino}-5deoxyadenosine”. Biochem Pharm 40:1499–1503

    Article  CAS  PubMed  Google Scholar 

  • Dash PR, Cartwright JE, Whitley GS (2003) Nitric oxide inhibits polyamine-induced apoptosis in the human extravillous trophoblast cell line SGHPL-4. Hum Reprod 18(5):959–968

    Article  CAS  PubMed  Google Scholar 

  • De Bandt JP, Moinard C, Cynober L (2006) Metabolisme et fonctions des polyamines. Immuno Analy Biol Spec 21:333–341

    Google Scholar 

  • Dudkowska M, Lai J, Gardini G, Stachurska A, Grzelakowska-Sztabert B, Colombatto S, Manteuffel-Cymborowska M (2003) Agmatine modulates the in vivo biosynthesis and interconversion of polyamines and cell proliferation. Biochim Biophys Acta 1619:159–166

    Article  CAS  PubMed  Google Scholar 

  • Eloranta TO, Khomutov AR, Khomutov RM et al (1990) Aminooxy analogues of spermidine as inhibitors of spermine synthase and substrates of hepatic polyamine acetylating activity. J Biochem 108:593–598

    Article  CAS  PubMed  Google Scholar 

  • Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    Article  CAS  PubMed  Google Scholar 

  • Fesus L, Piacentini M (2002) Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 27:534–539

    Article  CAS  PubMed  Google Scholar 

  • Fincato P, Moschou PN, Ahou A, Angelini R, Roubelakis-Angelakis KA, Federico R, Tavladoraki P (2012) The members of Arabidopsis thaliana PAO gene family exhibit distinct tissue- and organ-specific expression pattern during seedling growth and flower development. Amino Acids 42(2–3):831–841

    Article  CAS  PubMed  Google Scholar 

  • Freitas AE, Bettio LE, Neis VB, Santos DB, Ribeiro CM, Rosa PB, Farina M, Rodrigues AL (2014) Agmatine abolishes restraint stress induced depressive-like behavior and hippocampal antioxidant imbalance in mice. Prog Neuropsychopharmacol Biol Psychiatry 250:143–150

    Article  Google Scholar 

  • George VC, Naveen Kumar DR, Suresh PK, Ashok Kumar R (2015) Antioxidant, DNA protective efficacy and HPLC analysis of Annona muricata (soursop) extracts. J Food Sci Technol 54(4):2328–2335

    Article  Google Scholar 

  • Gerner EW, Meyskens FL (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4:781–792

    Article  CAS  PubMed  Google Scholar 

  • Green EL, Nakamura N, Dooley DM, Klinman JP, Sanders-Loehr J (2002) Rates of oxygen and hydrogen exchange as indicators of TPQ cofactor orientation in amine oxidases. Biochemistry 41:687–696

    Article  CAS  PubMed  Google Scholar 

  • Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes CS, DeFeo K, Woster PM, Gilmour SK (2013) Elevated ornithine decarboxylase activity promotes skin tumorigenesis by stimulating the recruitment of bulge stem cells but not via toxic polyamine catabolic metabolites. Amino Acids (in this issue). doi:10.1007/s00726-013-1559-0

    Google Scholar 

  • Hernandez SM, Sanchez MS, de Tarlovsky MN (2006) Polyamines as a defense mechanism against lipoperoxidation in Trypanosoma cruzi. Acta Trop 98:94–102

    Article  CAS  PubMed  Google Scholar 

  • Hessels J, Kingma AW, Ferwerda H, Keij J, van den Berg GA, Muskiet FA (1989) Microbial flora in the gastrointestinal tract abolishes cytostatic effects of difluoromethylornithine in vivo. Int J Cancer 43:1155e64

    Article  Google Scholar 

  • Iyer RK, Kim HK, Tsoa RW, Grody WW, Cederbaum SD (2002) Cloning and characterization of human agmatinase. Mol Genet Metab 75(3):209–218

    Article  CAS  PubMed  Google Scholar 

  • Jagoe WN, Howe K, O’Brien SC, Carroll J (2013) Identification of a role for a mouse sperm surface aldo-keto reductase (AKR1B7) and its human analogue in the detoxification of the reactive aldehyde, acrolein. Andrologia 45:326–331

    Article  CAS  PubMed  Google Scholar 

  • Jamwal S, Kumar P (2016) Spermidine ameliorates 3-nitropropionic acid (3-NP)-induced striatal toxicity: possible role of oxidative stress, neuroinflammation, and neurotransmitters. Physiol Behav 1(155):180–187

    Article  Google Scholar 

  • Jin X, Stamnaes J, Klock C, Di Raimondo TR, Sollid LM, Khosla C (2011) Activation of extracellular transglutaminase 2 by thioredoxin. J Biol Chem 286(43):37866–37873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalac P, Svecova S, Pelikanova T (2002) Levels of biogenic amines in typical vegetable products. Food Chem 77:349–351

    Article  CAS  Google Scholar 

  • Kanerva K, Makitie LT, Pelander A, Heiskala M (2008) Human ornithine decarboxylase paralogue (ODCp) is an antizyme inhibitor but not an arginine decarboxylase. Biochem J 409:187–192

    Article  CAS  PubMed  Google Scholar 

  • Keren-Paz A, Bercovich Z, Porat Z, Erez O (2006) Overexpression of antizyme-inhibitor in NIH3T3 fibroblasts provides growth advantage through neutralization of antizyme functions. Oncogene 25:5163–5172

    CAS  PubMed  Google Scholar 

  • Khan U, Mascio PD, Medeiros MH, Wilson T (1992) Spermine and spermidine protection of plasmid DNA against single-strand breaks induced by singlet oxygen. Proc Natl Acad Sci 89:11428–11430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koguchi K, Kobayashi S, Hayashi T, Matsufuji S (1997) Cloning and sequencing of a human cDNA encoding ornithine decarboxylase antizyme inhibitor. Biochim Biophys Acta 1353:209–216

    Article  CAS  PubMed  Google Scholar 

  • Kramer DL, Diegelman P, Jell J, Vujcic S, Merali S, Porter CW (2008) Polyamine acetylation modulates polyamine metabolic flux, a prelude to broader metabolic consequences. J Biol Chem 283(7):4241–4251

    Article  CAS  PubMed  Google Scholar 

  • Lagishetty CV, Naik SR (2008) Polyamines: potential anti-inflammatory agents and their possible mechanism of action. Ind J Pharm 40(3):121–125

    Article  CAS  Google Scholar 

  • Lee WT, Hong S, Yoon SH, Kim JH, Park KA, Seong GJ, Lee JE (2009) Neuroprotective effects of agmatine on oxygen-glucose deprived primary-cultured astrocytes and nuclear translocation of nuclear factor-kappa B. Brain Res 1281:64–70

    Article  CAS  PubMed  Google Scholar 

  • Li L, Rao JN, Bass BL, Wang JY (2001) NF-kappaB activation and susceptibility to apoptosis after polyamine depletion in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 280:G992–G1004

    CAS  PubMed  Google Scholar 

  • Libby PR, Porter CW (1992) Inhibition of enzymes of polyamine back-conversion by pentamidine and berenil. Biochem Pharm 44:830–832

    Article  CAS  PubMed  Google Scholar 

  • Loser C, Folsch UR, Paprotny C, Creutzfeldt W (1990) Polyamines in colorectal cancer. Evaluation of polyamine concentrations in the colon tissue, serum, and urine of 50 patients with colorectal cancer. Cancer 65:958–966

    Article  CAS  PubMed  Google Scholar 

  • Lovas E, Carlin G (1991) Spermine: an anti-oxidant and anti-inflammatory agent. Free Radic Biol Med 11:455–461

    Article  Google Scholar 

  • Mangold U (2006) Antizyme inhibitor: mysterious modulator of cell proliferation. Cell Mol Life Sci 63:2095–2101

    Article  CAS  PubMed  Google Scholar 

  • Marton LJ, Pegg AE (1995) Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 35:55–91

    Article  CAS  PubMed  Google Scholar 

  • Mathai JC, Sitaramam V (1994) Stretch sensitivity of transmembrane mobility of hydrogen peroxide though voids in the bilayer. Role of cardiolipin. J Biol Chem 269:17784–17793

    CAS  PubMed  Google Scholar 

  • McCormack SA, Johnson LR (1991) Role of polyamines in gastrointestinal mucosal growth. Am J Physiol 260:G795–G806

    CAS  PubMed  Google Scholar 

  • Merentie M, Uimari A, Pietila M, Sinervirta R, Keinänen TA, Vepsäläinen J, Khomutov A, Grigorenko N, Herzig KH, Jänne J, Alhonen L (2007) Oxidative stress and inflammation in the pathogenesis of activated polyamine catabolism-induced acute pancreatitis. Aminoacids 33:323–330

    CAS  Google Scholar 

  • Migliaccio N, Martucci NM, Ruggiero I, Sanges C, Ohkubo S, Lamberti A, Agostinelli E, Arcari P (2016) Ser/Thr kinases and polyamines in the regulation of non-canonical functions of elongation factor 1A. Amino Acids 48:2339–2352

    Article  CAS  PubMed  Google Scholar 

  • Murray-Stewart T, Wang Y, Devereux W, Casero RA (2002) Cloning and characterization of multiple human polyamine oxidase splice variants that code for isoenzymes with different biochemical characteristics. Biochem J 368:673–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi S, Cleveland JL (2016) Targeting the polyamine-hypusine circuit for the prevention and treatment of cancer. Amino Acids. doi:10.1007/s00726-016-2275-3 (in this issue)

    Google Scholar 

  • Obakan P, Arısan ED, Calcabrini A, Agostinelli E, Bolkent Ş, Palavan-Unsal N (2014) Activation of polyamine catabolic enzymes involved in diverse responses against epibrassinolide-induced apoptosis in LNCaP and DU145 prostate cancer cell lines. Amino Acids 46(3):553–564

    Article  CAS  PubMed  Google Scholar 

  • Park D, Choi SS, Ha KS (2010) Transglutaminase 2: a multifunctional protein in multiple subcellular compartments. Amino Acids 39:619–631

    Article  CAS  PubMed  Google Scholar 

  • Pegg AE (2006) Regulation of ornithine decarboxylase. J Biol Chem 281:14529–14532

    Article  CAS  PubMed  Google Scholar 

  • Pegg AE (2009) Mammalian polyamine metabolism and function. IUBMB Life 61:880–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegg AE (2013) Toxicity of polyamines and their metabolic products. Chem Res Toxicol 26:1782–1800

    Article  CAS  PubMed  Google Scholar 

  • Pegg AE, Casero RA Jr (2011) Current status of the polyamine research field. Methods Mol Biol 720:3–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, PlunkettW Keating MJ, Huang P (2003) Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by reactive oxygen-mediated mechanism. J Biol Chem 278:37832–37839

    Article  CAS  PubMed  Google Scholar 

  • Pèrez-Cano FJ, Franch À, Castellote C (2003) Castell M (2003) Immunomodulatory action of spermine and spermidine on NR8383 macrophage line in various culture conditions. Cell Immunol 226:86–94

    Article  PubMed  Google Scholar 

  • Peulen O, Gharbi M, Powroznik B, Dandrifosse G (2004) Differential effect of dietary spermine on alkaline phosphatase activity in jejunum and ileum of unweaned rats. Biochimie 86(7):487–493

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer LM, Yang CH, Murti A, McCormack SA, Viar MJ, Ray RM, Johnson LR (2001) Polyamine depletion induces rapid NF-kappa B activation in IEC-6 cells. J Biol Chem 276(49):45909–45913

    Article  CAS  PubMed  Google Scholar 

  • Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5(12):e327

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramani D, De Bandt JP, Cynober L (2014) Aliphatic polyamines in physiology and diseases. Clin Nutr 33(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Rao AM, Hatcher JF, Dogan A, Dempsey RJ (2000) Elevated N1-acetylspermidine levels in gerbil and rat brains after CNS injury. J Neurochem 74:1106–1111

    Article  CAS  PubMed  Google Scholar 

  • Reis DJ, Regunathan S (2000) Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci 21:187–193

    Article  CAS  PubMed  Google Scholar 

  • Rossin F, D’Eletto M, Falasca L, Sepe S, Cocco S, Fimia GM, Campanella M, Mastroberardino PG, Farrace MG, Piacentini M (2015) Transglutaminase 2 ablation leads to mitophagy impairment associated with a metabolic shift towards aerobic glycolysis. Cell Death Differ 22(3):408–418

    Article  CAS  PubMed  Google Scholar 

  • Saiki R, Park H, Ishii I, Yoshida M, Nishimura K, Toida T, Tatsukawa H, Kojima S, Ikeguchi Y, Pegg AE, Kashiwagi K, Igarashi K (2011) Brain infarction correlates more closely with acrolein than with reactive oxygen species. Biochem Biophys Res Commun 404(4):1044–1049

    Article  CAS  PubMed  Google Scholar 

  • Segal JA, Skolnick P (2000) Spermine-induced toxicity in cerebellar granule neurons is independent of its actions at NMDA receptors. J Neurochem 74:60–69

    Article  CAS  PubMed  Google Scholar 

  • Seiler N (1990) Polyamine metabolism. Digestion 46:319–330

    Article  CAS  PubMed  Google Scholar 

  • Seiler N, Atanassov CL (1994) The natural polyamines and the immune system. Prog Drug Res 43:87–141

    CAS  PubMed  Google Scholar 

  • Seiler N, Raul F (2005) Polyamines and apoptosis. J Cell Mol Med 9(3):623–642

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Thomas T, Shirahata A, Sigal LH, Thomas TJ (1999) Activation of nuclear factor kappaB by polyamines in breast cancer cells. Biochemistry 38:14763–14774

    Article  CAS  PubMed  Google Scholar 

  • Sharmin S, Sakata K, Kashiwagi K, Ueda S, Iwasaki S, Shirahata A, Igarashi K (2001) Polyamine cytotoxicity in the presence of bovine serum amine oxidase. Biochem Biophys Res Comm 282:228–235

    Article  CAS  PubMed  Google Scholar 

  • Soda K, Kano Y, Nakamura T, Kasono K, Kawakami M, Konishi F (2005) Spermine, a natural polyamine, suppresses LFA-1 expression on human lymphocyte. J Immunol 175:237–245

    Article  CAS  PubMed  Google Scholar 

  • Soulet D, Rivest S (2003) Polyamines play a critical role in the control innate immune response in the mouse central nervous system. J Cell Biol 162(2):257–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabó C, Southan GJ, Wood E, Thiemermann C, Vane JR (1994) Inhibition by spermine of the induction of nitric oxide synthase in J774.2 macrophages: requirement of a serum factor. Br J Pharmacol 112:355–356

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabib A, Bachrach U (1994) Activation of the proto-oncogene c-myc and c-fos by c-ras: involvement of polyamines. Biochem Biophys Res Commun 202:720–727

    Article  CAS  PubMed  Google Scholar 

  • Tabor CW, Tabor H (1984) Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase. Adv Enzymol Relat Areas Mol Biol 56:251–282

    CAS  PubMed  Google Scholar 

  • Telci D, Griffin M (2006) Tissue transglutaminase (TG2)-a wound response enzyme. Front Biosci 11:867–882

    Article  CAS  PubMed  Google Scholar 

  • Toro-Funes N, Bosch-Fusté J, Teresa M, Veciana-Nogués, Izquierdo-Pulido M (2013) In-vitro antioxidant activity of dietary polyamines. Food Res Intern 51(1):141–147

    Article  CAS  Google Scholar 

  • Turchanowa L, Shvetsov AS, Demin AV, Khomutov AR, Wallace HM, Stein J, Milovic V (2002) Insufficiently charged isosteric analogue of spermine: interaction with polyamine uptake, and effect on Caco-2 cell growth. Biochem Pharmacol 64(4):649–655

    Article  CAS  PubMed  Google Scholar 

  • Urdiales JL, Medina MA, Sanchez-Jimenez F (2001) Polyamine metabolism revisited. E J Gastroenterol Hepatol 13:1015–1019

    Article  CAS  Google Scholar 

  • Vargiu C, Cabella C, Belliardo S (1999) Agmatine modulates polyamine content in hepatocytes by inducing spermidine/spermine acetyltransferase. Euro J Biochem 259(3):933–938

    Article  CAS  Google Scholar 

  • Vera-Sirera F, Minguet EG, Singh SK, Ljung K, Tuominen H, Blázquez MA, Carbonell J (2010) Role of polyamines in plant vascular development. Plant Physiol Biochem 48(7):534–539

    Article  CAS  PubMed  Google Scholar 

  • Vujcic S, Liang P, Diegelman P, Kramer DL, Porter CW (2003) Genomic identification and biochemical characterization of the mammalian polyamine oxidase involved in polyamine back-conversion. Biochem J 370:19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks RS, Vanderwerf SM, Carlson CL, Burns MR, O’Day CL, Cai F, Devens BH, Webb HK (2000) Novel lysine-spermine conjugate inhibits polyamine transport and inhibits cell growth when given with DFMO. Exp Cell Res 261(1):293–302

    Article  CAS  PubMed  Google Scholar 

  • Weiss TS, Herfarth H, Obermeier F, Ouart J, Vogl D, Schölmerich J, Jauch KW, Rogler G (2004) Intracellular polyamine levels of intestinal epithelial cells in inflammatory bowel disease. Inflam Bowel Dis 10(5):529–535

    Article  CAS  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336(1):1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Woster PM (1992) S-(5deoxy-5-adenosyl)-1-ammonio-4-(methylsulfonio)-2-cyclopentene: a potent enzyme-activated irreversible inhibitor of S-adenosylmethionine decarboxylase. J Med Chem 35:3196–3320

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Datta S, Johnson GA, Li P, Satterfield MC, Spencer TE (2008) Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35(4):691–702

    Article  CAS  PubMed  Google Scholar 

  • Yi MC, Khosla C (2016) Thiol-disulfide exchange reactions in the mammalian extracellular environment. Ann Rev Chem Biomol Eng. doi:10.1146/annurev-chembioeng-080615-033553

    Google Scholar 

  • Zhang M, Wang H, Tracey KJ (2000) Regulation of macrophage activation and inflammation by spermine: a new chapter in an old story. Crit Care Med 28:60–66

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Technology Ministry (2014BAD08B11), the National Natural Science Foundation of China (nos. 31330075, 31560640, 31372326, and 31301989), and the Science and Technology Department of Hunan province (2015JC3126). We are also thankful to CAS-TWAS President’s Fellowship and UCAS financial and infrastructure support, as well as Changsha Lvye Biotechnology Limited Company Academician Expert Workstation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bie Tan or Yulong Yin.

Ethics declarations

Conflict of interest

The authors have no any conflict of interest.

Additional information

Handling Editor: S. Beninati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, T., Tan, B., Ren, W. et al. Polyamines: therapeutic perspectives in oxidative stress and inflammatory diseases. Amino Acids 49, 1457–1468 (2017). https://doi.org/10.1007/s00726-017-2447-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2447-9

Keywords

Navigation