Skip to main content

Advertisement

Log in

Climate change can reduce shrimp catches in equatorial Brazil

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Shrimps are an important and valuable fishing resource, being increasingly exploited worldwide, demanding appropriate management. However, factors such as how shrimps are affected by environmental variables and how such variables are likely to change under a climate change scenario are still poorly known. We used a Brazilian database with 10 years of shrimp catch and effort data, from 20 different small-scale equatorial fishing ports, to test how shrimp fishing productivity is affected by environmental (sea surface temperature (SST), wind, precipitation, and cloudiness), economic (ex-vessel price), spatial (fishing port), and temporal factors (year and month). The results showed that better productivities are reached at higher SST (to a limit 26 °C) and precipitation. Time (year) and space (different fishing villages showed different fishing success) also affected the fishing success. Considering that both temperature and precipitation were important determinants of shrimp productivity, we estimated how such productivity would be affected by climate change. Our results suggest that these fisheries could collapse in a warmer and drier future, which is a possible scenario for the region. Overall, a better understanding of regional shrimp fisheries could permit the development of tailor-made management measures. Besides, this study also shows how an economically important invertebrate stock is sensitive to climate change, which is a warning signal to developing countries, where there is a significant parcel of its population directly dependent on fishery exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allison EH, Perry AL, Badjeck M-C, Neil-Adger W, Brown K, Conway D, Halls AS, Pilling GM, Reynolds JD, Andrew NL, Dulvy NK (2009) Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish 10:173–196. doi:10.1111/j.1467-2979.2008.00310.x

    Article  Google Scholar 

  • Almeida AC, Baeza JA, Fransozo V, Castilho AL, Fransozo A (2012) Reproductive biology and recruitment of Xiphopenaeus kroyeri in a marine protected area in the Western Atlantic: implications for resource management. Aquat Biol 17:57–69. doi:10.3354/ab00462

    Article  Google Scholar 

  • Ambrizzi T, Araújo M (2012) Sumário executivo: primeiro relatório de avaliação nacional. Painel Brasileiro de Mudanças Climáticas, Rio de Janeiro

  • Andrade LAC (2015) Estratégias de exploração e comércio da pesca artesanal de polvo. Dissertation, Universidade Federal do Rio Grande do Norte

  • Arellano-Torres A, Pérez-Castañeda R, Defeo O (2006) Effects of a fishing gear on an artisanal multispecific penaeid fishery in a coastal lagoon of Mexico: mesh size, selectivity and management implications. Fish Manag Ecol 13:309–317. doi:10.1111/j.1365-2400.2006.00507.x

    Article  Google Scholar 

  • Arnason R (2007) Climate change and fisheries: assessing the economic impact in Iceland and Greenland. Nat Resour Model 20:163–197. doi:10.1111/j.1939-7445.2007.tb00205.x

    Article  Google Scholar 

  • Arreguin-Sanchez F, Zetina-Rejón M, Ramírez-Rodríguez M (2008) Exploring ecosystem-based harvesting strategies to recover the collapsed pink shrimp (Farfantepenaeus duorarum) fishery in the southern Gulf of Mexico. Ecol Model 214:83–94. doi:10.1016/j.ecolmodel.2007.11.021

    Article  Google Scholar 

  • Begossi A (2010) Small-scale fisheries in Latin America: management models and challenges. Maritime Studies 9:5–12

    Google Scholar 

  • Béné C, MacFadyen G, Allison EH (2005) Increasing the contribution of small-scale fisheries to poverty alleviation and food security. FAO, Rome

    Google Scholar 

  • Browder JA, Zein-Eldin Z, Criales MM, Robblee MB, Wong S, Jackson TL, Johnson D (2002) Dynamics of pink shrimp (Farfantepenaeus duorarum) recruitment potential in relation to salinity and temperature in Florida bay. Estuaries 25:1355–1371. doi:10.1007/BF02692230

    Article  Google Scholar 

  • Capparelli MV, Kasten P, Castilho AL, Costa RC (2012) Ecological distribution of the shrimp Litopenaeus schmitti (Burkenroad, 1936) (Decapoda, Penaeoidea) in Ubatuba Bay, São Paulo, Brazil. Invertebr Reprod Dev 56:173–179. doi:10.1080/07924259.2011.587272

    Article  Google Scholar 

  • Castilho AL, Pie MR, Fransozo A, Pinheiro AP, Costa RC (2008) The relationship between environmental variation and species abundance in shrimp community (Crustacea: Decapoda: Penaeoidea) in south-eastern Brazil. J Mar Biol Assoc U K 88:119–123. doi:10.1017/S0025315408000313

    Article  Google Scholar 

  • Castro RH, Costa RC, Fransozo A, Mantelatto FL (2005) Population structure of the seabob shrimp Xiphopenaeus kroyeri (Heller, 1862)(Crustacea: Penaeoidea) in the littoral of São Paulo, Brazil. Sci Mar 69:105–112

    Article  Google Scholar 

  • Christensen V, Guénette S, Heymans JJ, Walters CJ, Watson R, Zeller D, Pauly D (2003) Hundred-year decline of North Atlantic predatory fishes. Fish Fish 4:1–24. doi:10.1046/j.1467-2979.2003.00103.x

    Article  Google Scholar 

  • Cinner J (2005) Socioeconomic factors influencing customary marine tenure in the Indo-Pacific. Ecol Soc 10:36

    Article  Google Scholar 

  • Cinner JE, McClanahan TR, Graham NAJ, Daw TM, Maina J, Stead SM, Wamukota A, Brown K, Bodin O (2012) Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries. Glob Environ Change 22:12–20. doi:10.1016/j.gloenvcha.2011.09.018

    Article  Google Scholar 

  • Cinner JE, Pollnac RB (2004) Poverty, perceptions and planning: why socioeconomics matter in the management of Mexican reefs. Ocean Coast Manag 47:479–493. doi:10.1016/j.ocecoaman.2004.09.002

    Article  Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836. doi:10.1080/01621459.1979.10481038

    Article  Google Scholar 

  • de Damasio MAL, Lopes PFM, Pennino MG, Carvalho AR, Sumaila R (2016) Size matters: fishing less and yielding more in smaller-scale fisheries. ICES J Mar Sci J Cons:fsw016. doi:10.1093/icesjms/fsw016

  • Davis JL, Metcalfe WJ, Hines AH (2003) Implications of a fluctuating fish predator guild on behavior, distribution, and abundance of a shared prey species: the grass shrimp Palaemonetes pugio. J Exp Mar Biol Ecol 293:23–40. doi:10.1016/S0022-0981(03)00122-9

    Article  Google Scholar 

  • D’Incao F, Delevedove G, Maggini DE, Maggioni R (1998) Evidência genética da presença de Farfantepenaeus paulensis (Pérez Farfante 1967) no litoral nordeste do Brasil (Decapoda: Penaeidae). Nauplius 6:129–137

    Google Scholar 

  • D’Incao F, Valenti H, Rodrigues LF (2002) Avaliação da pesca de camarões nas regiões sudeste e sul do Brazil. 1965-1999. Atlantica 24:103–116

    Google Scholar 

  • Eutrópio FJ, Mariante FLF, Junior PDF, Krohling W (2012) Population parameters of the shrimp Xiphopenaeus kroyeri (Heller, 1862) (Crustacea, Penaeidae), caught by artisanal fisheries in Anchieta, Espírito Santo state - doi: 10.4025/actascibiolsci.v35i2.13408. Acta Sci Biol Sci 35:141–147. doi:10.4025/actascibiolsci.v35i2.13408

    Article  Google Scholar 

  • FAO (2014) The state of world fisheries and aquaculture: opportunities and challenges. FAO, Rome

    Google Scholar 

  • Ferreira L, Medley P (2005) The southern pink shrimp (Farfantepenaeus notialis) and Atlantic seabob (Xiphopenaeus kroyeri) fisheries of the Trinidad and Tobago trawl fishery. In: CRFM Fishery Report. Secretariat of the Caribbean Regional Fisheries Mechanism, Belize, pp 63–88

  • Forney K (2000) Environmental models of Cetacean abundance: reducing uncertainty in population trends. Conserv Biol 14:1271–1286

    Article  Google Scholar 

  • Freire FA, Luchiari AC, Fransozo V (2011) Environmental substrate selection and daily habitual activity in Xiphopenaeus kroyeri shrimp (Heller, 1862) (Crustacea: Penaeioidea). Indian J Mar Sci 40:325

    Google Scholar 

  • Furlan M, Castilho AL, Fernandes-Góes LC, Fransozo V, Bertini G, Costa RC (2013) Effect of environmental factors on the abundance of decapod crustaceans from soft bottoms off southeastern Brazil. An Acad Bras Cienc 85:1345–1356. doi:10.1590/0001-3765201394812

    Article  Google Scholar 

  • Garcia S, Reste LL (1986) Ciclo vitales, dinámica explotación y ordenación de las poblaciones de camarones peneidos costeros. FAO, Rome

    Google Scholar 

  • Gelcich S, Kaiser MJ, Castilla JC, Edwards-Jones G (2008) Engagement in co-management of marine benthic resources influences environmental perceptions of artisanal fishers. Environ Conserv 35:36–45

    Article  Google Scholar 

  • Gillett R (2008) Global study of shrimp fisheries. FAO, Rome

    Google Scholar 

  • Gusmão J, Lazoski C, Monteiro FA, Solé-Cava AM (2006) Cryptic species and population structuring of the Atlantic and Pacific seabob shrimp species, Xiphopenaeus kroyeri and Xiphopenaeus riveti. Mar Biol 149:491. doi:10.1007/s00227-005-0232-x

    Article  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Fiorenza M, D’Agroza C, Bruno JF, Casey KS, Ebert C, Fox HE, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952. doi:10.1126/science.1149345

    Article  CAS  Google Scholar 

  • Harley CDG, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. doi:10.1111/j.1461-0248.2005.00871.x

    Article  Google Scholar 

  • Heckler GS, da Costa RC, Fransozo A, Rosso S, Shimizu RM (2014) Long-term patterns of spatial and temporal distribution in the seabob shrimp Xiphopenaeus kroyeri (Decapoda: Penaeidae) population in southeastern Brazil. J Crustac Biol 34:326–333. doi:10.1163/1937240X-00002231

    Article  Google Scholar 

  • Hilborn R, Branch TA, Ernst B, Magnusson A, Minte-Vera C, Scheurell MD, Valero JL (2003) State of the world’s fisheries. Annu Rev Environ Resour 28:359–399. doi:10.1146/annurev.energy.28.050302.105509

    Article  Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637. doi:10.1126/science.1059199

    Article  CAS  Google Scholar 

  • Lloret J, Lleonart J, Solé I, Fromentin J-M (2001) Fluctuations of landings and environmental conditions in the north-western Mediterranean Sea. Fish Oceanogr 10:33–50. doi:10.1046/j.1365-2419.2001.00151.x

    Article  Google Scholar 

  • Lopes PFM (2008) Extracted and farmed shrimp fisheries in Brazil: economic, environmental and social consequences of exploitation. Environ Dev Sustain 10:639–655

    Article  Google Scholar 

  • Madrid-Vera J, Amezcua F, Morales-Bojórquez E (2007) An assessment approach to estimate biomass of fish communities from bycatch data in a tropical shrimp-trawl fishery. Fish Res 83:81–89. doi:10.1016/j.fishres.2006.08.026

    Article  Google Scholar 

  • Marengo JA, Chou SC, Kay G, Alves LM, Pesquero JF, Soares WR, Santos DC, Lyra AA, Sueiro G, Betts R, Chagas DJ, Gomes JL, Bustamante J, Tavares P (2011) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim Dyn 38:1829–1848. doi:10.1007/s00382-011-1155-5

    Article  Google Scholar 

  • Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283. doi:10.1038/nature01610

    Article  CAS  Google Scholar 

  • Ortega L, Celentano E, Delgado E, Defeo O (2016) Climate change influences on abundance, individual size and body abnormalities in a sandy beach clam. Mar Ecol Prog Ser 545:203–213. doi:10.3354/meps11643

    Article  Google Scholar 

  • Otero J, Álvarez-Salgado X, González AF, Miranda A, Groom SB, Cabanas JM, Casas G, Wheatley B, Guerra A (2008) Bottom-up control of common octopus Octopus vulgaris in the Galician upwelling system, northeast Atlantic Ocean. Mar Ecol Prog Ser 362:181–192. doi:10.3354/meps07437

    Article  Google Scholar 

  • Pantaleão JAF, Carvalho-Batista A, Fransozo A, da Costa RC (2016) The influence of upwelling on the diversity and distribution of marine shrimp (Penaeoidea and Caridea) in two tropical coastal areas of southeastern Brazil. Hydrobiologia 763:381–395. doi:10.1007/s10750-015-2429-4

    Article  Google Scholar 

  • Pauly D, Christensen V, Dalsgaard J, Froese R, Francisco T (1998) Fishing down marine food webs. Science 279:860–863. doi:10.1126/science.279.5352.860

    Article  CAS  Google Scholar 

  • Pauly D, Hilborn R, Branch TA (2013) Fisheries: does catch reflect abundance? Nature 494:303–306. doi:10.1038/494303a

    Article  CAS  Google Scholar 

  • Pennino MG, Thomé-Souza MJF, Carvalho AR, Fontes LCS, Parente C, Lopes PFM (2016) A spatial multivariate approach to understand what controls species catch composition in small-scale fisheries. Fish Res 175:132–141. doi:10.1016/j.fishres.2015.11.028

    Article  Google Scholar 

  • Pérez-Castañeda R, Defeo O (2005) Growth and mortality of transient shrimp populations (Farfantepenaeus spp.) in a coastal lagoon of Mexico: role of the environment and density-dependence. ICES J Mar Sci J Cons 62:14–24. doi:10.1016/j.icesjms.2004.10.005

    Article  Google Scholar 

  • Pérez-Jar L, Ramos Trujillo L (2010) Desempeño reproductivo de Litopenaeus schmitti de cultivo en condiciones comerciales. Revista cubana de investigaciones pesqueras 27:14–20

    Google Scholar 

  • Pershing AJ, Alexander MA, Hernandez CM, Kerr LA, Bris AL, Mills KE, Nye JA, Record NR, Scannell HA, Sherwood GD, Thomas AC (2015) Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350:809–812. doi:10.1126/science.aac9819

    Article  CAS  Google Scholar 

  • Pinnegar JK, Hutton TP, Placenti V (2006) What relative seafood prices can tell us about the status of stocks. Fish Fish 7:219–226. doi:10.1111/j.1467-2979.2006.00219.x

    Article  Google Scholar 

  • Development Team R (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ravier C, Fromentin J-M (2001) Long-term fluctuations in the eastern Atlantic and Mediterranean bluefin tuna population. ICES J Mar Sci J Cons 58:1299–1317. doi:10.1006/jmsc.2001.1119

    Article  Google Scholar 

  • Russell BD, Thompson J-AI, Falkenberg LJ, Connell SD (2009) Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob Chang Biol 15:2153–2162. doi:10.1111/j.1365-2486.2009.01886.x

    Article  Google Scholar 

  • Santos MB, González-Quirós R, Riveiro I, Cabanas JM, Porteiro C, Pierce GJ (2012) Cycles, trends, and residual variation in the Iberian sardine (Sardina pilchardus) recruitment series and their relationship with the environment. ICES J Mar Sci 69:739–750

    Article  Google Scholar 

  • Santos MCF, Ivo CTC (2000) Pesca, biologia e dinâmica populacional do camarão sete-barbas, Xiphopenaeus kroyeri (Heller, 1862) (Crustacea: Decapoda: Penaeidae), capturado em frente ao município de Caravelas (Bahia- Brasil). Bol Tec Cient CEPENE 8:131–164

    Google Scholar 

  • Silva ACC, Castilhos JC, Santos EAP, Brondízio LS, Bugoni L (2010) Efforts to reduce sea turtle bycatch in the shrimp fishery in Northeastern Brazil through a co-management process. Ocean Coast Manag 53:570–576. doi:10.1016/j.ocecoaman.2010.06.016

    Article  Google Scholar 

  • Simões SM, Costa RC, Fransozo A, Castilho AL (2010) Diel variation in abundance and size of the seabob shrimp Xiphopenaeus kroyeri (Crustacea, Penaeoidea) in the Ubatuba region, Southeastern Brazil. An Acad Bras Ciênc 82:369–378. doi:10.1590/S0001-37652010000200013

    Article  Google Scholar 

  • Simpson AW, Watling L (2006) An investigation of the cumulative impacts of shrimp trawling on mud-bottom fishing grounds in the Gulf of Maine: effects on habitat and macrofaunal community structure. ICES J Mar Sci 63:1616–1630

    Article  Google Scholar 

  • Sobrino I, Juarez A, Rey J, Romero Z, Baro J (2011) Description of the clay pot fishery in the Gulf of Cadiz (SW Spain) for Octopus vulgaris: selectivity and exploitation pattern. Fish Res 108:283–290. doi:10.1016/j.fishres.2010.12.022

    Article  Google Scholar 

  • Sonderblohm CP, Pereira J, Erzini K (2014) Environmental and fishery-driven dynamics of the common octopus (Octopus vulgaris) based on time-series analyses from leeward Algarve, southern Portugal. ICES J Mar Sci 71:2231–2241. doi:10.1093/icesjms/fst189

    Article  Google Scholar 

  • Stoner AW, Zimmerman RJ (1988) Food pathways associated with penaeid shrimps in a mangrove-fringed estuary. Fish Bull 86:543–551

    Google Scholar 

  • Sumaila UR, Lam VWY (2015) Out of stock: the impact of climate change on British Columbia’s staple seafood supply and prices. Vancity, Vancouver

    Google Scholar 

  • Sumaila UR, Marsden AD, Watson R, Pauly D (2007) A global ex-vessel fish price database: construction and applications. J Bioecon 9:39–51. doi:10.1007/s10818-007-9015-4

    Article  Google Scholar 

  • Swartzman LC, Gwadry FG, Shapiro AP, Teasell RW (1994) The factor structure of the coping strategies questionnaire. Pain 57:311–316

    Article  CAS  Google Scholar 

  • Sydeman WJ, Poloczanska E, Reed TE, Thompson SA (2015) Climate change and marine vertebrates. Science 350:772–777. doi:10.1126/science.aac9874

    Article  CAS  Google Scholar 

  • Teh LSL, Teh LCL, Sumaila UR (2011) Quantifying the overlooked socio-economic contribution of small-scale fisheries in Sabah, Malaysia. Fish Res 110:450–458. doi:10.1016/j.fishres.2011.06.001

    Article  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, New York

    Google Scholar 

  • Wood SN, Augustin NH (2002) GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol Model 157:157–177. doi:10.1016/S0304-3800(02)00193-X

    Article  Google Scholar 

  • Ye Y (2000) Is recruitment related to spawning stock in penaeid shrimp fisheries? ICES J Mar Sci J Cons 57:1103–1109. doi:10.1006/jmsc.2000.0706

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi:10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgements

We thank the fishers from Baía Formosa for helping us in the trawling sampling and for sharing with us their shrimp grounds. We also thank Rayssa Melo for organizing the data and Ludmila Damásio for making the map. Finally, we thank CNPq/MPA for the grant 407046/2012-7. Both PFML and FF thank CNPq for a productivity grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscila F. M. Lopes.

Additional information

Editor: Wolfgang Cramer

Electronic supplementary material

Figure S1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, P.F.M., Pennino, M.G. & Freire, F. Climate change can reduce shrimp catches in equatorial Brazil. Reg Environ Change 18, 223–234 (2018). https://doi.org/10.1007/s10113-017-1203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-017-1203-8

Keywords

Navigation