Skip to main content

Advertisement

Log in

Life-cycle assessment of solid-waste management in city of Zagreb, Croatia

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

In terms of improvement of the existing municipal solid-waste management system in city of Zagreb (Croatia) in a line with legal requirements and its shift towards circular economy, two scenarios were investigated. Life-cycle assessment (LCA) methodology was used to compare the existing municipal solid-waste management system mainly relay on landfilling of waste with expanded system combining mechanical separation of recyclable fractions of mixed municipal waste (MMW), anaerobic digestion of organic fraction, and thermal treatment of residual waste. The waste management-dedicated LCA software EASETECH was used for the assessment of the scenarios in accordance with the EDIP 1997 LCA method. Improved solid-waste management scenario showed superior results in terms of increased recycling rate of valuable materials and overall environmental performance. Because of introduction of convenient mechanical, biological, and thermal treatment technologies, it enables fulfilment of legal obligation concerning waste recycling targets and landfilling of waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Laurent A, Bakas I, Clavereul J, Bernstad A, Niero M, Gentile E, Hauschild MZ, Chrinstiansen TH (2014) Review of LCA studies of solid waste management systems—Part I: lessons learned and perspectives. Waste Manage 34(3):573–588

    Article  Google Scholar 

  2. Eurostat (2015): Municipal waste landfilled, incinerated, recycled and composted in the EU-27, pp 1995–2015

  3. European Commission (1999) Council directive 1999/31/EC on the landfill of waste. Off J Eur Commun L 182:14–23

    Google Scholar 

  4. European Commission (2008) Council directive 2008/98/EC on waste and repealing certain Directives. Off J Eur Commun L 312:99–118

    Google Scholar 

  5. Croatian Environmental and Nature Protection Agency (2016) Report on municipal waste for Croatia. Croatian Environmental and Nature Agency, Zagreb

    Google Scholar 

  6. Barton JR, Dalley D, Patel VS (1996) Life cycle assessment for waste management. Waste Manag 16(1–3):35–50

    Article  Google Scholar 

  7. Ekvall T, Assefa G, Bjorklund A, Eriksson O, Finnveden G (2007) What life-cycle assessment does and does not do in assessments of waste management. Waste Manag 27(8):989–996

    Article  Google Scholar 

  8. Finneveden G, Ekvall T (1998) Life-cycle assessment as a decision-support tool – the case of recycling versus incineration of paper. Resour Conserv Recycl 24(3–4):235–256

    Article  Google Scholar 

  9. Saner D, Walser T, Vadenbo CO (2012) End-of-life and waste management in life cycle assessment-Zurich, 6 December 2011. Int J Life Cycle Ass 17(4):504–510

    Article  Google Scholar 

  10. Blengini GA, Fantoni M, Busto M, Genon G, Zanetti MC (2012) Participator approach, acceptability and transparency of waste management LCAs: case studies of Torino and Cuneo. Waste Manag 32(9):1712–1721

    Article  Google Scholar 

  11. Di Maria F, Micale C (2014) A holistic life cycle analysis of waste management scenarios at increasing source segregation intensity: the case of and Italian urban area. Waste Manag 34(11):2383–2392

    Article  Google Scholar 

  12. Di Maria F, Sordi A, Micale C (2013) Experimental and life cycle assessment analysis of gas emission from mechanically-biologically pretreated waste in a landfill with energy recovery. Waste Manag 33(11):2557–2567

    Article  Google Scholar 

  13. Koci V, Trecakova T (2011) Mixed municipal waste management in the Czech Republic from the point of view of the LCA method. Int J Life Cycle Ass 16(2):113–124

    Article  Google Scholar 

  14. Blengini GA (2008) Using LCA to evaluate impacts and resources conservation potential of composting: a case study of the Asti district in Italy. Resour Conserv Recycl 52(12):1373–1381

    Article  Google Scholar 

  15. Lunde S, Peters GM (2005) Life cycle assessment of food waste management options. J Clean Prod 13(3):275–286

    Article  Google Scholar 

  16. Montejo C, Tonini D, Márquez M, Astrup TF (2013) Mechanical-biological treatment: Performance and potentials. An LCA of 8 MBT plants including waste characterization. J Environ Manag 128:661–673

    Article  Google Scholar 

  17. Finnveden G, Johansson J, Lind P, Moberg A (2009) Life cycle assessment of energy from solid waste—part 1: general methodology and results. J Clean Prod 13(3):213–229

    Article  Google Scholar 

  18. Ferreira S, Cabral M, De Jaeger S, Da Cruz N, Simoes P, Marques RC (2015) Life cycle assessment and valuation of the packaging waste recycling system in Belgium. J Mater Cycles Waste Manag 19(1):144–154

    Article  Google Scholar 

  19. Kaplan PO, Decarolis J, Thorneloe S (2009) Is it better to burn or burry waste for clean electricity generation? Environ Sci Technol 43(6):1711–1717

    Article  Google Scholar 

  20. Chaya W, Gheewala S (2007) Life cycle assessment of MSW-to-energy schemes in Thailand. J Clean Prod 15(15):1463–1468

    Article  Google Scholar 

  21. Otoma S, Diaz R (2015) Life-cycle green house gas emissions and economic analysis of alternative treatments of sloid waste from city markets in Vietnam. J Mater Cycles Waste Manag 13(1):70–87

    Google Scholar 

  22. Abduli MA, Naghib A, Yonesi M, Akbari A (2011) Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill. Environ Monitor Assess 178(1–4):487–498

    Article  Google Scholar 

  23. Assamoi B, Lawryshyn Y (2012) The environmental comparison of landfilling vs incineration of MSW accounting for waste diverstion. Waste Manag 32(5):1019–1030

    Article  Google Scholar 

  24. Zhao Y, Wang HT, Lu WJ, Damgaard A, Christensen TH (2009) Life-cycle assessment of the municipal solid waste management system in Hangzhou, China. Waste Manag Res 27(4):399–406

    Article  Google Scholar 

  25. Antonopoulos I, Karagiannidis A, Tsarsarelis T, Perkoulidis G (2013) Applying waste management scenarios in the Peloponnese region in Greece: a critical analysis in the frame of life cycle assessment. Environ Sci Poll Res 20(4):2499–2511

    Article  Google Scholar 

  26. Laurent A, Clavereul J, Bernstad A, Bakas I, Niero M, Gentile E, Chrinstiansen TH, Hauschild MZ (2014) Review of LCA studies of solid waste management systems—part II: methodological guidance for a better practice. Waste Manag 34(3):589–606

    Article  Google Scholar 

  27. ISO 14040 (2006) Environmental management-life cycle assessment-requirements and guidelines, 1st edn. International Standards Organization, Geneva

    Google Scholar 

  28. ISO 14040 (2006) Environmental management-life cycle assessment-principles and framework, 2nd edn. International Standards Organization, Geneva

    Google Scholar 

  29. Clavreul J, Baumeister H, Christensen TH, Damgaard A (2014) An environmental assessment system for environmental technologies. Environ Model Softw 60:18–30

    Article  Google Scholar 

  30. Ribic B, Voca N, Ilakovac B (2016) Concept of sustainable waste management in the City of Zagreb: towards the implementation of circular economy approach. J Air Waste Manag Ass 67(2):241–259

    Article  Google Scholar 

  31. Boldrin A, Christensen TH (2010) Seasonal generation and composition of garden waste in Aarhus (Denmark). Waste Manag 30(4):551–557

    Article  Google Scholar 

  32. Eisted R, Christensen TH (2011) Characterization of household waste in Greenland. Waste Manag 31(7):1461–1466

    Article  Google Scholar 

  33. Riber C, Petersen C, Christensen TH (2009) Chemical composition of material fractions in Danish household waste. Waste Manag 29(4):1251–1257

    Article  Google Scholar 

  34. Larsen AW, Merrild H, Christensen TH (2009) Recycling of glass: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):754–762

    Article  Google Scholar 

  35. Manfredi S, Christensen TS (2009) Environmental assessment of solid waste landfill technologies by means of LCA-modeling. Waste Manag 29(12):32–43

    Article  Google Scholar 

  36. Finnveden G, Hauschild MZ, Ekvall T, Guine J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91(1):1–21

    Article  Google Scholar 

  37. Boldrin A, Neidel TL, Damgaard A, Bhander GS, Moller J, Christensen TH (2011) Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE. Waste Manag 31(4):619–630

    Article  Google Scholar 

  38. Riber C, Bhander GS, Christensen TH (2008) Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE). Waste Manag Res 26(1):96–103

    Article  Google Scholar 

  39. Merrild H, Damgaard A, Christensen TS (2008) Life cycle assessment of waste paper management: the importance of technology data system boundaries in assessing recycling and incineration. Resour Conserv Recycl 52(12):1391–1398

    Article  Google Scholar 

  40. Larsen AW, Merrild H, Christensen TS (2009) Recycling of glass: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):754–762

    Article  Google Scholar 

  41. Astrup T, Fruergaard T, Christensen TS (2009) Recycling of plastic: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):763–772

    Article  Google Scholar 

  42. Damgaard A, Larsen AW, Christensen TS (2009) Recycling of metals: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):773–780

    Article  Google Scholar 

  43. Wenzel H, Hauschild MZ, Alting L (1997) Environmental assessment of products, methodology, tools and case studies in product development, vol 1. Chapman & Hall, London

    Google Scholar 

  44. Christensen TH, Gentil E, Boldrin A, Larsen AW, Weidema BP, Hauschild M (2009) C balance, carbon dioxide emissions and global warming potentials in LCA modelling of waste management systems. Waste Manag Res 27(8):696–706

    Article  Google Scholar 

  45. Larsen AW, Vrgoc M, Christensen TH (2009) Diesel consumption in waste collection and transport and its environmental significance. Waste Manag Res 27(7):652–659

    Article  Google Scholar 

  46. Manfredi S, Tonini D, Christensen TH (2011) Environmental assessment of different management options for individual waste fractions by means of life cycle assessment modelling. Resour Conserv Recycl 55(11):995–1004

    Article  Google Scholar 

  47. Merrild H, Damgaard A, Christensen TH (2009) Recycling of paper: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):746–753

    Article  Google Scholar 

  48. Merrild H, Larsen AW, Christensen TH (2012) Assessing recycling versus incineration of key materials in municipal waste: the importance of efficient energy recovery and transport distances. Waste Manag 32(5):1009–1018

    Article  Google Scholar 

  49. Polprasert C (1989) Organic waste recycling. Wiley, Chester

    Google Scholar 

  50. Clavreul J, Guyonnet D, Christensen TH (2012) Quantifying uncertainty in LCA-modeling waste management systems. Waste Manag 32(12):2482–2495

    Article  Google Scholar 

  51. Slagstad H, Brattebø H (2013) Influence of assumptions about household waste composition in waste management LCAs. Waste Manag 33(1):212–219

    Article  Google Scholar 

  52. Schmidt S, Pahl-Wostl C (2007) Modeling biowaste flows for life-cycle assessment. J Ind Ecol 11(1):181–199

    Article  Google Scholar 

  53. Croatian Parliament (2015) Regulation on landfilling of waste, categories and conditions for waste. Official Gazette of the Republic of Croatia, p 114

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neven Voca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadzic, A., Voca, N. & Golubic, S. Life-cycle assessment of solid-waste management in city of Zagreb, Croatia. J Mater Cycles Waste Manag 20, 1286–1298 (2018). https://doi.org/10.1007/s10163-017-0693-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-017-0693-2

Keywords

Navigation