Skip to main content
Log in

Advances in engineered trans-acting regulatory RNAs and their application in bacterial genome engineering

  • Metabolic Engineering and Synthetic Biology - Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Small noncoding RNAs, a large class of ancient posttranscriptional regulators, are increasingly recognized and utilized as key modulators of gene expression in a broad range of microorganisms. Owing to their small molecular size and the central role of Watson–Crick base pairing in defining their interactions, structure and function, numerous diverse types of trans-acting RNA regulators that are functional at the DNA, mRNA and protein levels have been experimentally characterized. It has become increasingly clear that most small RNAs play critical regulatory roles in many processes and are, therefore, considered to be powerful tools for genetic engineering and synthetic biology. The trans-acting regulatory RNAs accelerate this ability to establish potential framework for genetic engineering and genome-scale engineering, which allows RNA structure characterization, easier to design and model compared to DNA or protein-based systems. In this review, we summarize recent advances in engineered trans-acting regulatory RNAs that are used in bacterial genome-scale engineering and in novel cellular capabilities as well as their implementation in wide range of biotechnological, biological and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmed W, Hafeez MA, Mahmood S (2018) Identification and functional characterization of bacterial small non-coding RNAs and their target: a review. Gene Rep 10:167–176. https://doi.org/10.1016/j.genrep.2018.01.001

    Article  Google Scholar 

  2. Ahmed W, Zheng K, Liu ZF (2016) Small non-coding RNAs: new insights in modulation of host immune response by intracellular bacterial pathogens. Front Immunol. https://doi.org/10.3389/Fimmu.2016.00431

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aiba H (2007) Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol 10:134–139. https://doi.org/10.1016/j.mib.2007.03.010

    Article  CAS  PubMed  Google Scholar 

  4. Auslander S, Fussenegger M (2014) Synthetic Biology toehold gene switches make big footprints. Nature 516:333–334

    Article  CAS  PubMed  Google Scholar 

  5. Auslander S, Stucheli P, Rehm C, Auslander D, Hartig JS, Fussenegger M (2014) A general design strategy for protein-responsive riboswitches in mammalian cells. Nat Methods 11:1154–1160. https://doi.org/10.1038/Nmeth.3136

    Article  CAS  PubMed  Google Scholar 

  6. Baek JM, Mazumdar S, Lee SW, Jung MY, Lim JH, Seo SW, Jung GY, Oh MK (2013) Butyrate production in engineered Escherichia coli with synthetic scaffolds. Biotechnol Bioeng 110:2790–2794. https://doi.org/10.1002/bit.24925

    Article  CAS  PubMed  Google Scholar 

  7. Barrangou R, Horvath P (2012) CRISPR. New horizons in phage resistance and strain identification. Annu Rev Food Sci Technol 3:143–162. https://doi.org/10.1146/annurev-food-022811-101134

    Article  CAS  PubMed  Google Scholar 

  8. Bikard D, Jiang WY, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41:7429–7437. https://doi.org/10.1093/nar/gkt520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Borujeni AE, Channarasappa AS, Salis HM (2014) Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res 42:2646–2659. https://doi.org/10.1093/nar/gkt1139

    Article  CAS  Google Scholar 

  10. Braff D, Shis D, Collins JJ (2016) Synthetic biology platform technologies for antimicrobial applications. Adv Drug Deliv Rev 105:35–43. https://doi.org/10.1016/j.addr.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  11. Briner AE, Donohoue PD, Gomaa AA, Selle K, Slorach EM, Nye CH, Haurwitz RE, Beisel CL, May AP, Barrangou R (2014) Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell 56:333–339. https://doi.org/10.1016/j.molcel.2014.09.019

    Article  CAS  PubMed  Google Scholar 

  12. Cambray G, Guimaraes JC, Mutalik VK, Lam C, Mai QA, Thimmaiah T, Carothers JM, Arkin AP, Endy D (2013) Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Res 41:5139–5148. https://doi.org/10.1093/nar/gkt163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carter JR, Keith JH, Barde PV, Fraser TS, Fraser MJ (2010) Targeting of highly conserved dengue virus sequences with anti-dengue virus trans-splicing group I introns. BMC Mol Biol. https://doi.org/10.1186/1471-2199-11-84

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chappell J, Takahashi MK, Lucks JB (2015) Creating small transcription activating RNAs. Nat Chem Biol 11:214–220. https://doi.org/10.1038/nchembio.1737

    Article  CAS  PubMed  Google Scholar 

  15. Chappell J, Takahashi MK, Meyer S, Loughrey D, Watters KE, Lucks J (2013) The centrality of RNA for engineering gene expression. Biotechnol J 8:1379–1395. https://doi.org/10.1002/biot.201300018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chappell J, Watters KE, Takahashi MK, Lucks JB (2015) A renaissance in RNA synthetic biology: new mechanisms, applications and tools for the future. Curr Opin Chem Biol 28:47–56

    Article  CAS  PubMed  Google Scholar 

  17. Chaudhary AK, Na D, Lee EY (2015) Rapid and high-throughput construction of microbial cell-factories with regulatory noncoding RNAs. Biotechnol Adv 33:914–930. https://doi.org/10.1016/j.biotechadv.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  18. Chen YY, Jensen MC, Smolke CD (2010) Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc Natl Acad Sci USA 107:8531–8536. https://doi.org/10.1073/pnas.1001721107

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cho SH, Haning K, Contreras LM (2015) Strain engineering via regulatory noncoding RNAs: not a one-blueprint-fits-all. Curr Opin Chem Eng 10:25–34

    Article  Google Scholar 

  20. Citorik RJ, Mimee M, Lu TK (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32:1141–1145. https://doi.org/10.1038/nbt.3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS synthetic biology 4:723–728. https://doi.org/10.1021/sb500351f

    Article  CAS  PubMed  Google Scholar 

  22. Danino T, Mondragon-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks. Nature 463:326–330. https://doi.org/10.1038/nature08753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Delebecque CJ, Lindner AB, Silver PA, Aldaye FA (2011) Organization of intracellular reactions with rationally designed RNA assemblies. Science 333:470–474. https://doi.org/10.1126/science.1206938

    Article  CAS  PubMed  Google Scholar 

  24. Dobrin A, Saxena P, Fussenegger M (2016) Synthetic biology: applying biological circuits beyond novel therapies. Integr Biol 8:409–430

    Article  CAS  Google Scholar 

  25. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096. https://doi.org/10.1126/science.1258096

    Article  CAS  PubMed  Google Scholar 

  26. Du J, Yuan YB, Si T, Lian JZ, Zhao HM (2012) Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res. https://doi.org/10.1093/nar/gks549

    Article  PubMed  PubMed Central  Google Scholar 

  27. Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9:641. https://doi.org/10.1038/msb.2012.66

    Article  PubMed  PubMed Central  Google Scholar 

  28. Farzadfard F, Perli SD, Lu TK (2013) Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth Biol 2:604–613. https://doi.org/10.1021/sb400081r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fiskaa T, Birgisdottir AB (2010) RNA reprogramming and repair based on trans-splicing group I ribozymes. New Biotechnol 27:194–203. https://doi.org/10.1016/j.nbt.2010.02.013

    Article  CAS  Google Scholar 

  30. Forsyth RA, Haselbeck RJ, Ohlsen KL, Yamamoto RT, Xu H, Trawick JD, Wall D, Wang L, Brown-Driver V, Froelich JM, C KG, King P, McCarthy M, Malone C, Misiner B, Robbins D, Tan Z, Zhu Zy ZY, Carr G, Mosca DA, Zamudio C, Foulkes JG, Zyskind JW (2002) A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol Microbiol 43:1387–1400

    Article  CAS  PubMed  Google Scholar 

  31. Gallagher RR, Patel JR, Interiano AL, Rovner AJ, Isaacs FJ (2015) Multilayered genetic safeguards limit growth of microorganisms to defined environments. Nucleic Acids Res 43:1945–1954. https://doi.org/10.1093/nar/gku1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Galloway KE, Franco E, Smolke CD (2013) Dynamically reshaping signaling networks to program cell fate via genetic controllers. Science 341:1235005. https://doi.org/10.1126/science.1235005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ge P, Zhang S (2015) Computational analysis of RNA structures with chemical probing data. Methods 79–80:60–66. https://doi.org/10.1016/j.ymeth.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  34. Gottesman S, Storz G (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a003798

    Article  PubMed  PubMed Central  Google Scholar 

  35. Green AA, Silver PA, Collins JJ, Yin P (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell 159:925–939. https://doi.org/10.1016/j.cell.2014.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guillier M, Gottesman S (2008) The 5 end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. Nucleic Acids Res 36:6781–6794. https://doi.org/10.1093/nar/gkn742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11:122–123. https://doi.org/10.1038/nmeth.2812

    Article  CAS  PubMed  Google Scholar 

  38. Hör J, Gorski SA, Vogel J (2018) Bacterial RNA biology on a genome scale. Mol Cell 70(5):785–799

    Article  PubMed  Google Scholar 

  39. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Isaacs FJ, Dwyer DJ, Ding CM, Pervouchine DD, Cantor CR, Collins JJ (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22:841–847. https://doi.org/10.1038/nbt986

    Article  CAS  PubMed  Google Scholar 

  41. Jasinski D, Haque F, Binzel DW, Guo P (2017) Advancement of the emerging field of RNA nanotechnology. ACS Nano 11:1142–1164. https://doi.org/10.1021/acsnano.6b05737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jeong J, Cho N, Jung D, Bang D (2013) Genome-scale genetic engineering in Escherichia coli. Biotechnol Adv 31:804–810. https://doi.org/10.1016/j.biotechadv.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  43. Kang Z, Zhang C, Zhang J, Jin P, Zhang J, Du G, Chen J (2014) Small RNA regulators in bacteria: powerful tools for metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 98:3413–3424

    Article  CAS  PubMed  Google Scholar 

  44. Karagiannis P, Fujita Y, Saito H (2016) RNA-based gene circuits for cell regulation. Proc Jpn Acad B-Phys 92:412–422. https://doi.org/10.2183/pjab.92.412

    Article  CAS  Google Scholar 

  45. Kauffman KJ, Webber MJ, Anderson DG (2016) Materials for non-viral intracellular delivery of messenger RNA therapeutics. J Control Release 240:227–234

    Article  CAS  PubMed  Google Scholar 

  46. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11:367–379. https://doi.org/10.1038/nrg2775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kiani S, Beal J, Ebrahimkhani MR, Huh J, Hall RN, Xie Z, Li Y, Weiss R (2014) CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat Methods 11:723–726. https://doi.org/10.1038/nmeth.2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim JY, Cha HJ (2003) Down-regulation of acetate pathway through antisense strategy in Escherichia coli: improved foreign protein production. Biotechnol Bioeng 83:841–853. https://doi.org/10.1002/bit.10735

    Article  CAS  PubMed  Google Scholar 

  49. Kriner MA, Groisman EA (2017) RNA secondary structures regulate three steps of Rho-dependent transcription termination within a bacterial mRNA leader. Nucleic Acids Res 45:631–642. https://doi.org/10.1093/nar/gkw889

    Article  CAS  PubMed  Google Scholar 

  50. Lee YJ, Moon TS (2018) Design rules of synthetic non-coding RNAs in bacteria. Methods 143:58–69

    Article  CAS  PubMed  Google Scholar 

  51. Libis VK, Bernheim AG, Basier C, Jaramillo-Riveri S, Deyell M, Aghoghogbe I, Atanaskovic I, Bencherif AC, Benony M, Koutsoubelis N, Lochner AC, Marinkovic ZS, Zahra S, Zegman Y, Lindner AB, Wintermute EH (2014) Silencing of antibiotic resistance in E. coli with engineered phage bearing small regulatory RNAs. ACS Synth Biol 3:1003–1006. https://doi.org/10.1021/sb500033d

    Article  CAS  PubMed  Google Scholar 

  52. Liu CC, Qi L, Lucks JB, Segall-Shapiro TH, Wang D, Mutalik VK, Arkin AP (2012) An adaptor from translational to transcriptional control enables predictable assembly of complex regulation. Nat Methods 9:1088–1094. https://doi.org/10.1038/nmeth.2184

    Article  CAS  PubMed  Google Scholar 

  53. Liu Y, Zhu Y, Li J, Shin HD, Chen RR, Du G, Liu L, Chen J (2014) Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Metab Eng 23:42–52. https://doi.org/10.1016/j.ymben.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  54. Lou C, Stanton B, Chen YJ, Munsky B, Voigt CA (2012) Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat Biotechnol 30:1137–1142. https://doi.org/10.1038/nbt.2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Loughrey D, Watters KE, Settle AH, Lucks JB (2014) SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res. https://doi.org/10.1093/nar/gku909

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lucks JB, Qi L, Mutalik VK, Wang D, Arkin AP (2011) Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc Natl Acad Sci USA 108:8617–8622. https://doi.org/10.1073/pnas.1015741108

    Article  PubMed  PubMed Central  Google Scholar 

  57. Luo ML, Mullis AS, Leenay RT, Beisel CL (2015) Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res 43:674–681. https://doi.org/10.1093/nar/gku971

    Article  CAS  PubMed  Google Scholar 

  58. Lv L, Ren YL, Chen JC, Wu Q, Chen GQ (2015) Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis. Metab Eng 29:160–168. https://doi.org/10.1016/j.ymben.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  59. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang LH, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833. https://doi.org/10.1038/nbt.2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meng HL, Xiong ZQ, Song SJ, Wang J, Wang Y (2016) Construction of polyketide overproducing Escherichia coli strains via synthetic antisense RNAs based on in silico fluxome analysis and comparative transcriptome analysis. Biotechnol J 11:530–541. https://doi.org/10.1002/biot.201500351

    Article  CAS  PubMed  Google Scholar 

  61. Meng J, Kanzaki G, Meas D, Lam CK, Crummer H, Tain J, Xu HH (2012) A genome-wide inducible phenotypic screen identifies antisense RNA constructs silencing Escherichia coli essential genes. FEMS Microbiol Lett 329:45–53. https://doi.org/10.1111/j.1574-6968.2012.02503.x

    Article  CAS  PubMed  Google Scholar 

  62. Meyer S, Chappell J, Sankar S, Chew R, Lucks JB (2016) Improving fold activation of small transcription activating RNAs (STARs) with rational RNA engineering strategies. Biotechnol Bioeng 113:216–225. https://doi.org/10.1002/bit.25693

    Article  CAS  PubMed  Google Scholar 

  63. Mutalik VK, Guimaraes JC, Cambray G, Mai QA, Christoffersen MJ, Martin L, Yu A, Lam C, Rodriguez C, Bennett G, Keasling JD, Endy D, Arkin AP (2013) Quantitative estimation of activity and quality for collections of functional genetic elements. Nat Methods 10:347–353. https://doi.org/10.1038/nmeth.2403

    Article  CAS  PubMed  Google Scholar 

  64. Mutalik VK, Qi L, Guimaraes JC, Lucks JB, Arkin AP (2012) Rationally designed families of orthogonal RNA regulators of translation. Nat Chem Biol 8:447–454. https://doi.org/10.1038/Nchembio.919

    Article  CAS  PubMed  Google Scholar 

  65. Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31:170–174. https://doi.org/10.1038/nbt.2461

    Article  CAS  PubMed  Google Scholar 

  66. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31:1120–1123. https://doi.org/10.1093/bioinformatics/btu743

    Article  CAS  PubMed  Google Scholar 

  67. Nakashima N, Tamura T (2009) Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli. Nucleic Acids Res 37:e103. https://doi.org/10.1093/nar/gkp498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakashima N, Tamura T, Good L (2006) Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli. Nucleic Acids Res 34:e138. https://doi.org/10.1093/nar/gkl697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nawtaisong P, Fraser ME, Carter JR, Fraser MJ (2015) Trans-splicing group I intron targeting hepatitis C virus IRES mediates cell death upon viral infection in Huh7.5 cells. Virology 481:223–234. https://doi.org/10.1016/j.virol.2015.02.023

    Article  CAS  PubMed  Google Scholar 

  70. Nielsen AA, Segall-Shapiro TH, Voigt CA (2013) Advances in genetic circuit design: novel biochemistries, deep part mining, and precision gene expression. Curr Opin Chem Biol 17:878–892. https://doi.org/10.1016/j.cbpa.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  71. Nielsen AA, Voigt CA (2014) Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol Syst Biol 10:763. https://doi.org/10.15252/msb.20145735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pandey SP, Winkler JA, Li H, Camacho DM, Collins JJ, Walker GC (2014) Central role for RNase YbeY in Hfq-dependent and Hfq-independent small-RNA regulation in bacteria. BMC Genom 15:121. https://doi.org/10.1186/1471-2164-15-121

    Article  Google Scholar 

  73. Papenfort K, Vanderpool CK (2015) Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 39:362–378. https://doi.org/10.1093/femsre/fuv016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pardee K, Green AA, Ferrante T, Cameron DE, DaleyKeyser A, Yin P, Collins JJ (2014) Paper-based synthetic gene networks. Cell 159:940–954. https://doi.org/10.1016/j.cell.2014.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Polstein LR, Gersbach CA (2015) A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 11:198–200. https://doi.org/10.1038/nchembio.1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Qi L, Haurwitz RE, Shao WJ, Doudna JA, Arkin AP (2012) RNA processing enables predictable programming of gene expression. Nat Biotechnol 30:1002. https://doi.org/10.1038/nbt.2355

    Article  CAS  PubMed  Google Scholar 

  77. Qi L, Lucks JB, Liu CC, Mutalik VK, Arkin AP (2012) Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res 40:5775–5786. https://doi.org/10.1093/nar/gks168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Qi LS, Arkin AP (2014) A versatile framework for microbial engineering using synthetic non-coding RNAs. Nat Rev Microbiol 12:341–354. https://doi.org/10.1038/nrmicro3244

    Article  CAS  PubMed  Google Scholar 

  79. Vazquez-Anderson J, Contreras LM (2013) Regulatory RNAs Charming gene management styles for synthetic biology applications. RNA Biol 10:1778–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rodrigo G, Landrain TE, Jaramillo A (2012) De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proc Natl Acad Sci USA 109:15271–15276. https://doi.org/10.1073/pnas.1203831109

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rodrigo G, Landrain TE, Shen S, Jaramillo A (2013) A new frontier in synthetic biology: automated design of small RNA devices in bacteria. Trends Genet 29:529–536

    Article  CAS  PubMed  Google Scholar 

  82. Rodrigo G, Majer E, Prakash S, Daros JA, Jaramillo A, Poyatos JF (2015) Exploring the dynamics and mutational landscape of riboregulation with a minimal synthetic circuit in living cells. Biophys J 109:1070–1076. https://doi.org/10.1016/j.bpj.2015.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sachdeva G, Garg A, Godding D, Way JC, Silver PA (2014) In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res 42:9493–9503. https://doi.org/10.1093/nar/gku617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sakai Y, Abe K, Nakashima S, Yoshida W, Ferri S, Sode K, Ikebukuro K (2014) Improving the gene-regulation ability of small RNAs by scaffold engineering in Escherichia coli. ACS Synth Biol 3:152–162. https://doi.org/10.1021/sb4000959

    Article  CAS  PubMed  Google Scholar 

  85. Salsman J, Dellaire G (2017) Precision genome editing in the CRISPR era. Biochem Cell Biol = Biochim et Biol Cell 95:187–201. https://doi.org/10.1139/bcb-2016-0137

    Article  CAS  Google Scholar 

  86. Seetin MG, Mathews DH (2012) RNA structure prediction: an overview of methods. Methods Mol Biol 905:99–122. https://doi.org/10.1007/978-1-61779-949-5_8

    Article  CAS  PubMed  Google Scholar 

  87. Segal DJ, Meckler JF (2013) Genome engineering at the dawn of the golden age. Annu Rev Genom Hum G 14:135–158. https://doi.org/10.1146/annurev-genom-091212-153435

    Article  CAS  Google Scholar 

  88. Sharma V, Yamamura A, Yokobayashi Y (2012) Engineering artificial small RNAs for conditional gene silencing in Escherichia coli. ACS Synth Biol 1:6–13. https://doi.org/10.1021/sb200001q

    Article  CAS  PubMed  Google Scholar 

  89. Si T, HamediRad M, Zhao H (2015) Regulatory RNA-assisted genome engineering in microorganisms. Curr Opin Biotechnol 36:85–90

    Article  CAS  PubMed  Google Scholar 

  90. Si T, Xiao H, Zhao H (2015) Rapid prototyping of microbial cell factories via genome-scale engineering. Biotechnol Adv 33:1420–1432. https://doi.org/10.1016/j.biotechadv.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  91. Singh V, Braddick D, Dhar PK (2017) Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 599:1–18. https://doi.org/10.1016/j.gene.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  92. Song CW, Lee J, Lee SY (2015) Genome engineering and gene expression control for bacterial strain development. Biotechnol J 10:56–68. https://doi.org/10.1002/biot.201400057

    Article  CAS  PubMed  Google Scholar 

  93. Sowa SW, Vazquez-Anderson J, Clark CA, De La Pena R, Dunn K, Fung EK, Khoury MJ, Contreras LM (2015) Exploiting post-transcriptional regulation to probe RNA structures in vivo via fluorescence. Nucleic Acids Res. https://doi.org/10.1093/nar/gku1191

    Article  PubMed  Google Scholar 

  94. Stevens JT, Carothers JM (2015) Designing RNA-based genetic control systems for efficient production from engineered metabolic pathways. ACS Synth Biol 4:107–115. https://doi.org/10.1021/sb400201u

    Article  CAS  PubMed  Google Scholar 

  95. Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891. https://doi.org/10.1016/j.molcel.2011.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Takahashi MK, Chappell J, Hayes CA, Sun ZZ, Kim J, Singhal V, Spring KJ, Al-Khabouri S, Fall CP, Noireaux V, Murray RM, Lucks JB (2015) Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription-translation (TX-TL) systems. ACS Synth Biol 4:503–515. https://doi.org/10.1021/sb400206c

    Article  CAS  PubMed  Google Scholar 

  97. Takahashi MK, Lucks JB (2013) A modular strategy for engineering orthogonal chimeric RNA transcription regulators. Nucleic Acids Res 41:7577–7588. https://doi.org/10.1093/nar/gkt452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Topp S, Reynoso CMK, Seeliger JC, Goldlust IS, Desai SK, Murat D, Shen A, Puri AW, Komeili A, Bertozzi CR, Scott JR, Gallivan JP (2010) Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl Environ Microbiol 76:7881–7884. https://doi.org/10.1128/Aem.01537-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Townshend B, Kennedy AB, Xiang JS, Smolke CD (2015) High-throughput cellular RNA device engineering. Nat Methods 12:989–994. https://doi.org/10.1038/nmeth.3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tyrrell J, McGinnis JL, Weeks KM, Pielak GJ (2013) The cellular environment stabilizes adenine riboswitch RNA structure. Biochemistry 52:8777–8785. https://doi.org/10.1021/bi401207q

    Article  CAS  PubMed  Google Scholar 

  101. Urban JH, Vogel J (2007) Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res 35:1018–1037. https://doi.org/10.1093/nar/gkl1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Villa JK, Su Y, Contreras LM, Hammond MC (2018) Synthetic biology of small RNAs and riboswitches. Microbiol Spectr 6(3):527–545. https://doi.org/10.1128/microbiolspec.RWR-0007-2017

    Article  Google Scholar 

  103. Wagner EG, Flardh K (2002) Antisense RNAs everywhere? Trends Genet: TIG 18:223–226

    Article  CAS  PubMed  Google Scholar 

  104. Wang B, Kuramitsu HK (2005) Inducible antisense RNA expression in the characterization of gene functions in Streptococcus mutans. Infect Immun 73:3568–3576. https://doi.org/10.1128/IAI.73.6.3568-3576.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894. https://doi.org/10.1038/nature08187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Watters KE, Yu AM, Strobel EJ, Settle AH, Lucks JB (2016) Characterizing RNA structures in vitro and in vivo with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Methods 103:34–48. https://doi.org/10.1016/j.ymeth.2016.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Westbrook AM, Lucks JB (2017) Achieving large dynamic range control of gene expression with a compact RNA transcription–translation regulator. Nucleic Acids Res 45:5614–5624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu J, Yu O, Du G, Zhou J, Chen J (2014) Fine-tuning of the fatty acid pathway by synthetic antisense RNA for enhanced (2S)-naringenin production from l-tyrosine in Escherichia coli. Appl Environ Microbiol 80:7283–7292. https://doi.org/10.1128/AEM.02411-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang Y, Lin Y, Li L, Linhardt RJ, Yan Y (2015) Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab Eng 29:217–226. https://doi.org/10.1016/j.ymben.2015.03.018

    Article  CAS  PubMed  Google Scholar 

  110. Yoo SM, Na D, Lee SY (2013) Design and use of synthetic regulatory small RNAs to control gene expression in Escherichia coli. Nat Protoc 8:1694–1707. https://doi.org/10.1038/nprot.2013.105

    Article  CAS  PubMed  Google Scholar 

  111. Zadeh JN, Wolfe BR, Pierce NA (2011) Nucleic acid sequence design via efficient ensemble defect optimization. J Comput Chem 32:439–452. https://doi.org/10.1002/jcc.21633

    Article  CAS  PubMed  Google Scholar 

  112. Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS, Lim WA (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160:339–350. https://doi.org/10.1016/j.cell.2014.11.052

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waqas Ahmed.

Ethics declarations

Conflict of interest

The authors declared that no competing interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, W., Hafeez, M.A. & Ahmed, R. Advances in engineered trans-acting regulatory RNAs and their application in bacterial genome engineering. J Ind Microbiol Biotechnol 46, 819–830 (2019). https://doi.org/10.1007/s10295-019-02160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02160-y

Keywords

Navigation