Skip to main content
Log in

Multiphase fluid dynamics and transport processes of low capillary number cavitating flows

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

To better understand the multiphase fluid dynamics and associated transport processes of cavitating flows at the capillary number of 0.74 and 0.54, and to validate the numerical results, a combined computational and experimental investigation of flows around a hydrofoil is studied based on flow visualizations and time-resolved interface movement. The computational model is based on a modified RNG k-ε model as turbulence closure, along with a vapor–liquid mass transfer model for treating the cavitation process. Overall, favorable agreement between the numerical and experimental results is observed. It is shown that the cavitation structure depends on the interaction of the water–vapor mixture and the vapor among the whole cavitation stage, the interface between the vapor and the two-phase mixture exhibits substantial unsteadiness. And, the adverse motion of the interface relates to pressure and velocity fluctuations inside the cavity. In particular, the velocity in the vapor region is lower than that in the two-phase region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

chord length of hydrofoil

C ε1RNG, C ε2RNG, C μRNG :

empirical constants

F e , F c , α nuc :

empirical constants

k :

turbulent kinetic energy

\({{\dot {m}^+}}\) :

evaporation rate

\({{\dot {m}^-}}\) :

condensation rate

n :

empirical constant

P B :

pressure in the vapor bubble

p k :

source term represents the production of k

P sat :

saturated vapor pressure

P turb :

local turbulent pressure fluctuating

P v :

phase-change threshold pressure of vapor

P :

reference static pressure

R B :

vapor bubble radius

Re :

Reynolds number

S :

bubble surface tension

U :

reference velocity

u :

velocity component in x-direction

v :

velocity component in y-direction

α v :

vapor volume fractio

ε :

turbulent dissipation rate

μ :

liminar viscosity

μ t :

turbulent viscosity

ν :

kinematic viscosity

ρ :

density of liquid-vapor mixture

ρ l :

density of liquid

ρ v :

density of vapor

σ :

cavitation number

σ kRNG, σ εRNG :

empirical constants

References

  1. Wang G.Y., Senocak I., Shyy W., Ikohagi T., Cao S.L.: Dynamics of attached turbulent cavitating flows. Prog. Aerosp. Sci. 37, 551–581 (2001)

    Article  Google Scholar 

  2. Brennen C.E.: Cavitation and Bubble Dynamics. Oxford University Press, New York (1995)

    Google Scholar 

  3. Rood E.P.: Review-mechanisms of cavitation inception. J. Fluids Eng. 113, 163–175 (1991)

    Article  Google Scholar 

  4. Kawanami Y., Kato H., Yamauchi H., Tanimura M., Tagaya Y.: Mechanism and control of cloud cavitation. J. Fluids Eng. 119, 788–794 (1997)

    Article  Google Scholar 

  5. Leger A.T., Ceccio S.L.: Examination of the flow near the leading edge of attached cavitation. part 1. detachment of two-dimensional and axisymmetric cavities. J. Fluid Mech. 376, 61–90 (1998)

    Article  MATH  Google Scholar 

  6. Delange D.F., Debruin G.J.: Sheet cavitation and cloud cavitation, re-entrant jet and three-dimensionality. Appl. Sci. Res. 58, 91–114 (1998)

    Article  Google Scholar 

  7. Kjeldsen M., Arndt R.E.A., Effertz M.: Spectral characteristics of sheet/cloud cavitation. Trans. ASME J. Fluids Eng. 122, 481–487 (2000)

    Article  Google Scholar 

  8. Hrubes J.D.: High-speed imaging of supercavitating underwater projectiles. Exp. Fluids 30, 57–64 (2001)

    Article  Google Scholar 

  9. Shen, Y., Dimotakis, P.: The influence of surface cavitation on hydrodynamic forces. In: Proceedings 22nd ATTC, St. Johns (1989)

  10. Wu Y.T., Wang D.P.: A wake model for free-streamline flow theory, part 2. cavity flows past obstacles of arbitrary profile. J. Fluid Mech. 18, 65–93 (1963)

    Article  Google Scholar 

  11. Furness R.A., Hutton S.P.: Experimental and theoretical studies of two-dimensional fixed-type cavities. J. Fluids Eng. 97, 515–522 (1975)

    Google Scholar 

  12. Lee C.S., Kim Y.G., Lee J.T.: A potential–based panel method for the analysis of two-dimensional super- or partially-cavitating hydrofoils. J. Ship Res. 195, 168–181 (1992)

    Google Scholar 

  13. Katz J.: Cavitation phenomena within region of flow separation. J. Fluid Mech. 140, 397–436 (1984)

    Article  Google Scholar 

  14. Gopalan S., Katz J.: Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 12, 895–911 (2000)

    Article  MATH  Google Scholar 

  15. Leroux J.B., Astolfi J.A., Billard J.Y.: An experimental study of unsteady partial cavitation. J. Fluids Eng. 126, 94–101 (2004)

    Article  Google Scholar 

  16. Adrian R.J.: Twenty years of particle image velocimetry. Exp. Fluids 39, 159–169 (2005)

    Article  Google Scholar 

  17. Tassin A.L., Li C.Y., Ceccio S.L., Bernal L.P.: Velocity field measurements of cavitating flows. Exp. Fluids 20, 125–130 (1995)

    Article  Google Scholar 

  18. Claudia O., Ceccio S.: The influence of developed cavitation on the flow of a turbulent shear layer. Phys. Fluids 14, 3414–3431 (2002)

    Article  Google Scholar 

  19. Wosnik, M., Lucas, G., Arndt, R.E.A.: Measurements in high void fraction turbulent bubbly wakes created by axisymmetric ventilated supercavitation. Proc. Fluids Eng. Div. Summer Meet 1959–1966 (2005)

  20. Wang, G.Y., Li, X.B., Zhang, M.D., Shyy, W.: Multiphase dynamics of supercavitating flows around a hydrofoil. Sixth International Symposium on Cavitation. Wageningen, The Netherlands (2006)

  21. Chen Y., Heister S.D.: A numerical treatment for attached cavitation. J. Fluids Eng. 116, 613–618 (1994)

    Article  Google Scholar 

  22. Wu J.Y., Wang G.Y., Shyy W.: Time-dependent turbulent cavitating flow computations with interfacial transport and filter-based models. Int. J. Numer. Methods Fluids 49, 739–761 (2005)

    Article  MATH  Google Scholar 

  23. Delannoy Y., Kueny J.L.: Two phase flow approach in unsteady cavitation modelling. ASME Fluids Eng. Div. Publ FED 98, 153–158 (1990)

    Google Scholar 

  24. Senocak I., Shyy W.: Evaluation of cavitation models for Navier–Stokes computations. ASME Fluids Eng. Div. Publ FED 257, 395–401 (2002)

    Google Scholar 

  25. Senocak I., Shyy W.: Interfacial dynamics-based modelling of turbulent cavitating flows, Part-1: model development and steady-state computations. Int. J. Numer. Methods Fluids 44, 975–995 (2004)

    Article  MATH  Google Scholar 

  26. Singhal A.K., Vaidya N., Leonard A.D.: Multi-dimensional simulation of cavitating flows using a PDF model for phase change. ASME Fluids Eng. Div. Publ FED 4, 7 (1997)

    Google Scholar 

  27. Kunz R.F., Boger D.A., Stinbring D.R.: A preconditioned navier-stokes method for two-phase flows with application to cavitation prediction. Comput. Fluids 29, 849–875 (2000)

    Article  MATH  Google Scholar 

  28. Senocak I., Shyy W.: A pressure-based method for turbulent cavitating flow computations. J. Comput. Phys. 176, 363–383 (2002)

    Article  MATH  Google Scholar 

  29. Senocak I., Shyy W.: Interfacial dynamics-based modelling of turbulent cavitating flows, Part-2: Time-dependent computations. Int. J. Numer. Methods Fluids 44, 997–1016 (2004)

    Article  MATH  Google Scholar 

  30. Singhal A.K., Athavale M.M., Li H.Y., Jiang Y.: Mathematical basis and validation of the full cavitation model. J. Fluids Eng. 124, 617–624 (2002)

    Article  Google Scholar 

  31. Wu, J., Utturkar, Y., Senocak, I.: Impact of turbulence and compressibility modeling on three-dimensional cavitating flow computations. AIAA, 2003

  32. Shyy W.: A study of finite difference approximations to steady-state, convection-dominated flow problems. J. Comput. Phys. 57, 415–438 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  33. Shyy W.: A numerical study of annular dump diffuser flows. Comput. Methods Appl. Mech. Eng. 53, 47–65 (1985)

    Article  Google Scholar 

  34. Vaidyanathan R., Senocak I., Wu J., Shyy W.: Sensitivity evaluation of a transport-based turbulent cavitation model. J. Fluids Eng. 125, 447–458 (2003)

    Article  Google Scholar 

  35. Coutier-delgosha O., Fertes-Patella R., Reboud J.L.: Evaluation of the turbulence model influence on the numerical simulation of unsteady cavitation. J. Fluids Eng. Trans. ASME 125, 38–45 (2003)

    Article  Google Scholar 

  36. Tang J.B., Zhong C.W.: Numerical simulation of the cavitating, supercavitating flow based on Navier–Stokes equations. Chin. J. Theor. Appl. Mech. 37, 640–644 (2002) (in Chinese)

    Google Scholar 

  37. Yakhot V., Orszag S.A.: Renormalization group analysis of turbulence: I. basic theory. J. Sci. Comput. 1, 1–51 (1986)

    Article  MathSciNet  Google Scholar 

  38. Yakhot V., Orszag S.A., Thangam S., Gatski T.B., Speziale C.G.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A Fluid Dyn. 4, 1510–1520 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  39. Johansen S.T., Wu J.Y., Shyy W.: Filter-based unsteady RANS computations. Int. J. Heat Fluid Flow 25, 10–21 (2004)

    Article  Google Scholar 

  40. Li, X.B., Wang, G.Y., Zhang, M.D., Shyy, W.: Structures of supercavitating multiphase flows. Int. J. Thermal Sci. (2008, in press)

  41. Tulin, M.P.: Supercavitating propellers. In: Proceedings of Fourth ONR Symposium on Naval Hydrodynamics, ONR/ACR-92, Belgium (2001)

  42. Kubota A., Kato H., Yamaguchi H.: A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. J. Fluid Mech. 240, 59–96 (1992)

    Article  Google Scholar 

  43. Keller A.P., Rott H.K.: Effect of flow turbulence on cavitation inception. ASME Fluids Eng. Div. Publ FED 4, 3 (1997)

    Google Scholar 

  44. Stoffel B., Schuller W.: Investigations concerning the influence of pressure distribution and cavity length on hydrodynamic cavitation intensity. ASME Fluids Eng. Div. Publ FED 226, 51–58 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyu Wang.

Additional information

The project supported by the National Natural Science Foundation of China (50679001) and NASA Constellation University Institutes Program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Wang, G., Yu, Z. et al. Multiphase fluid dynamics and transport processes of low capillary number cavitating flows. Acta Mech Sin 25, 161–172 (2009). https://doi.org/10.1007/s10409-008-0188-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0188-4

Keywords

Navigation