Skip to main content
Log in

Improving convergence of incremental harmonic balance method using homotopy analysis method

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We have deduced an iteration scheme in the incremental harmonic balance (IHB) method using the harmonic balance plus the Newton-Raphson method. Since the convergence of the iteration is dependent upon the initial values in the iteration, the convergent region is greatly restricted for some cases. In this contribution, in order to enlarge the convergent region of the IHB method, we constructed the zeroth-order deformation equation using the homotopy analysis method, in which the IHB method is employed to solve the deformation equation with an embedding parameter as the active increment. Taking the Duffing and the van der Pol equations as examples, we obtained the highly accurate solutions. Importantly, the presented approach renders a convenient way to control and adjust the convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lau S.L., Cheung Y.K.: Amplitude incremental variational principle for nonlinear vibration of elastic systems. ASME J. Appl. Mech. 48, 959–964 (1981)

    MATH  Google Scholar 

  2. Ferri A.A.: On the equivalence of the incremental harmonic balance method and the harmonic balance-Newton Raphson method. ASME J. Appl. Mech. 53, 455–457 (1986)

    MathSciNet  Google Scholar 

  3. Lau S.L., Cheung Y.K., Wu S.Y.: Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear system. ASME J. Appl. Mech. 50, 871–876 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lau S.L., Cheung Y.K., Wu S.Y.: Nonlinear vibration of thin elastic plates, part 1: Generalized incremental Hamilton’s principle and element formulation; part 2: Internal resonance by amplitude-incremental finite element. ASME J. Appl. Mech. 51, 837–851 (1984)

    Article  MATH  Google Scholar 

  5. Cheung Y.K., Chen S.H., Lau S.L.: Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140, 273–286 (1990)

    Article  MathSciNet  Google Scholar 

  6. Lau S.L., Yuen S.W.: The Hopf bifurcation and limit cycle by the incremental harmonic balance method. Comput. Methods Appl. Mech. Eng. 91, 1109–1121 (1991)

    Article  MathSciNet  Google Scholar 

  7. Lau S.L., Yuen S.W.: Solution diagram of nonlinear dynamic-systems by IHB method. J. Sound Vib. 167, 303–316 (1993)

    Article  MATH  Google Scholar 

  8. Raghothama A., Narayanan S.: Non-linear dynamics of a two-dimensional airfoil by incremental harmonic balance method. J. Sound Vib. 226, 493–517 (1999)

    Article  Google Scholar 

  9. Xu L., Lu M.W., Cao Q.: Bifurcation and chaos of a harmonically excited oscillator with both stiffness and viscous damping piecewise linearities by incremental harmonic balance method. J. Sound Vib. 264, 873–882 (2003)

    Article  Google Scholar 

  10. Sarkar S., Venkatraman K.: A numerical technique to predict periodic and quasi-periodic response of nonlinear dynamic systems. Comput. Struct. 81, 1383–1393 (2003)

    Article  Google Scholar 

  11. Liao S.J.: A second-order approximate analytical solution of a simple pendulum by the process analysis method. ASME J. Appl. Mech. 59, 970–975 (1992)

    MATH  Google Scholar 

  12. Liao S.J.: An approximate solution technique not depending on small parameters: A special example. Int. J. Non-linear Mech. 30, 371–380 (1995)

    Article  MATH  Google Scholar 

  13. Liao S.J.: A kind of approximate solution technique which does not depend upon small parameters—II: an application in fluid mechanics. Int. J. Non-linear Mech. 32(5), 815–822 (1997)

    Article  MATH  Google Scholar 

  14. Liao S.J., Chwang A.T.: Application of homotopy analysis method in nonlinear oscillations. ASME J. Appl. Mech. 65(4), 914–922 (1998)

    MathSciNet  Google Scholar 

  15. Liao S.J.: An explicit, totally analytic approximate solution for Blasius’ viscous flow problems. Int. J. Non-linear Mech. 34, 759–778 (1999)

    Article  MATH  Google Scholar 

  16. Liao S.J.: An analytic approximate approach for free oscillations of self-excited system. Int. J. Non-linear Mech. 39, 271–280 (2003)

    Article  Google Scholar 

  17. Liao S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mehmood A., Ali A.: Analytic homotopy solution of generalized three-dimensional channel flow due to uniform stretching of the plate. Acta Mech. Sin. 23, 503–510 (2007)

    Article  MathSciNet  Google Scholar 

  19. Asghar S., Mudassar Gulzar M., Ayub M.: Effects of partial slip on flow of a third grade fluid. Acta Mech. Sin. 22, 393–396 (2006)

    Article  Google Scholar 

  20. Abbasbandy S.: The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation. Phys. Lett. A 361, 478–483 (2007)

    Article  MATH  Google Scholar 

  21. Liao S.J., Tan Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–354 (2007)

    Article  MathSciNet  Google Scholar 

  22. Hayat T., Sajid M.: On analytic solution for thin film flow of a forth grade fluid down a vertical cylinder. Phys. Lett. A 361, 316–322 (2007)

    Article  MATH  Google Scholar 

  23. Sajid M., Hayat T., Asghar S.: Comparison between the HAM and HPM solutions of tin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dyn. 50(1–2), 27–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen Y.M., Liu J.K.: Homotopy analysis method for limit cycle flutter of airfoils. Appl. Math. Comput. 203(2), 854–863 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wen J.M., Cao Z.C.: Nonlinear oscillations with parametric excitation solved by homotopy analysis method. Acta Mech. Sin. 24, 325–329 (2008)

    Article  MathSciNet  Google Scholar 

  26. Chen Y.M, Liu J.K.: A study of homotopy analysis method for limit cycle of van der Pol equation. Commun. Nonlinear Sci. Numer. Simul. 14, 1416–1421 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jike Liu.

Additional information

The project supported by the National Natural Science Foundation of China (10772202), Doctoral Program Foundation of Ministry of Education of China (20050558032), and Guangdong Province Natural Science Foundation (07003680, 05003295).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Liu, J. Improving convergence of incremental harmonic balance method using homotopy analysis method. Acta Mech Sin 25, 707–712 (2009). https://doi.org/10.1007/s10409-009-0256-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0256-4

Keywords

Navigation