Skip to main content
Log in

On the conditions to control curvature tensors of Ricci flow

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

An important problem in the study of Ricci flow is to find the weakest conditions that provide control of the norm of the full Riemannian curvature tensor. In this article, supposing (M n, g(t)) is a solution to the Ricci flow on a Riemmannian manifold on time interval [0, T), we show that \({L^\frac{n+2}{2}}\) norm bound of scalar curvature and Weyl tensor can control the norm of the full Riemannian curvature tensor if M is closed and T < ∞. Next we prove, without condition T < ∞, that C 0 bound of scalar curvature and Weyl tensor can control the norm of the full Riemannian curvature tensor on complete manifolds. Finally, we show that to the Ricci flow on a complete non-compact Riemannian manifold with bounded curvature at t = 0 and with the uniformly bounded Ricci curvature tensor on M n × [0, T), the curvature tensor stays uniformly bounded on M n × [0, T). Hence we can extend the Ricci flow up to the time T. Some other results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao H.D.: Deformation of Kähler metrics to Käher-Einstein metrics on compact Kähler manifolds. Invent. math. 81, 359–372 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen B.L., Zhu X.P.: Complete Riemannian manifolds with pointwise pinched curvature. Invent. Math. 140(2), 423–452 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow. Science Press. American Mathematical Society, Beijing, Providence (2006)

  4. Cheeger J., Gromov M., Taylor M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17, 15–53 (1982)

    MATH  MathSciNet  Google Scholar 

  5. Dai X., Ma L.: Mass under Ricci flow. Commun. Math. Phys. 274, 65–80 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Glickenstein D.: Precompactness of solutions to the Ricci flow in the absence of injectivity radius estimates. Geom. Topol. 7, 487–510 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fukaya K.: A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters. J. Differ. Geom. 28(1), 1–21 (1988)

    MATH  MathSciNet  Google Scholar 

  8. Gallot S., Hulin D., Lafontaine J.: Riemmanian Geometry. 3rd edn. Universitext Springer-Verlag, Berlin (2004)

    Google Scholar 

  9. Hamilton R.: A compactness property for solutions of the Ricci flow. Am. J. Math. 117, 545–572 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hamilton, R.: The Formation of Singularities in the Ricci Flow, Surveys in Differential Geometry, vol. II (Cambridge, MA, 1993), pp. 7–136. International Press, Cambridge, MA (1995)

  11. Hamilton R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 2, 255–306 (1982)

    MathSciNet  Google Scholar 

  12. Knopf D.: Estimating the trace-free Ricci tensor in Ricci flow. Proc. Am. Math. Soc. 137(9), 3099–3103 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ma, L., Chen, D.: Remarks on complete non-compact gradient Ricci expanding solitons, Kodai Math. J (2010) online

  14. Ma L., Zhu A.: Nonsingular Ricci flow on a noncompact manifold in dimension three. C. R. Mathematique, Ser. I 137, 185–190 (2009)

    Article  MathSciNet  Google Scholar 

  15. Ma L., Yang Y.: L 2 forms and Ricci flow on complete non-compact manifolds. Geometriae Decicata 119, 151–158 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sesum N.: Curvature tensor under the Ricci flow. Am. J. Math. 127, 1315–1324 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sesum N., Tian G.: Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman) and some applications. J. Inst. Math. Jussieu 7, 3 (2008)

    Article  MathSciNet  Google Scholar 

  18. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. math.DG/0211159 (2002)

  19. Perelman, G.: Ricci flow with surgery on three-manifolds. math.DG/0303109 (2003)

  20. Perelman, G.: Finite time extinction for the solutions to the Ricci flow on certain three-manifold. math.DG/0307245 (2003)

  21. Schoen, R., Yau, S.T.: Lectures on differential geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, I International Press, Cambridge, MA (1994)

  22. Wang, B.: On the conditions to extend Ricci flow. Int. Math. Res. Not., Article ID RNN012, 30 pp. (2008)

  23. Böhm C., Wilking B.: Manifolds with positive curvature operator are space forms. Ann. Math. 167, 1079–1097 (2008)

    Article  MATH  Google Scholar 

  24. Ye R.: Curvature estimates for the Ricci flow I. Calc. Var. Partial Differ. Equ. 31, 417–437 (2008)

    Article  MATH  Google Scholar 

  25. Ye, R.: Curvature estimates for the Ricci flow II. arXiv:math/0509143v4 [math.DG] 17 Jul (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ma.

Additional information

Communicated by J. Eichhorn (Greifswald)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, L., Cheng, L. On the conditions to control curvature tensors of Ricci flow. Ann Glob Anal Geom 37, 403–411 (2010). https://doi.org/10.1007/s10455-010-9194-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-010-9194-4

Keywords

Mathematics Subject Classification 2000

Navigation