Skip to main content
Log in

Conjugate points on the symplectomorphism group

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Let \(\mathcal {D}_{\omega }^{s}(M)\) denote the group of symplectic diffeomorphisms of a closed symplectic manifold \(M\), which are of Sobolev class \(H^{s}\) for sufficiently high \(s\). When equipped with the \(L^{2}\) metric on vector fields, \(\mathcal {D}_{\omega }^{s}\) becomes an infinite-dimensional Hilbert manifold whose tangent space at a point \(\eta \) consists of \(H^{s}\) sections \(X\) of the pull-back bundle \(\eta ^{*}TM\) for which the corresponding vector field \(u=X\circ \eta ^{-1}\) on \(M\) satisfies \(\mathcal {L}_{u}\omega =0\). Geodesics of the \(L^{2}\) metric are globally defined, so that the \(L^{2}\) metric admits an exponential mapping defined on the whole tangent space. It was shown that this exponential mapping is a non-linear Fredholm map of index zero. Singularities of the exponential map are known as conjugate points and in this paper we construct explicit examples of them on \(\mathcal {D}_{\omega }^{s}(\mathbb {C}P^{n})\). We then solve the Jacobi equation explicitly along a geodesic in \(\mathcal {D}_{\omega }^{s}\), generated by a Killing vector field, and characterize all conjugate points along such a geodesic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A \(\dot{}\) denotes a derivative with respect to \(t\).

References

  1. Arnold, V.I.: Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des fluids parfait. Ann. Inst. Grenoble 16 (1966)

  2. Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics. Springer, Berlin (1998)

  3. Benn, J.: \(L^{2}\) Geometry of the Symplectomorphism Group. Thesis University of Notre Dame (2014)

  4. Ebin, D.G.: Geodesics on the symplectomorphism group. Geom. Funct. Anal. 22(1), 202–212 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Engel, K-J., Nagel, R., One-Parameter Semigroups for Linear Evolution Equations. Springer, Berlin (2000)

  6. Ebin, D., Marsden, J.: Groups of Diffeomorphisms and the Motion of an Incompressible Fluid. Ann. Math. 92 (1970)

  7. Ebin, D., Misiolek, G., Preston, S.: Singularities of the Exponential Map on the Volume-Preserving Diffeomorphism Group. Geom. Funct. Anal. 16 (2006)

  8. Grossman, N.: Hilbert manifolds without epiconjugate points. Proc. Am. Math. Soc. 16, 1365–1371 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Holm, D.D., Tronci, C.: The geodesic Vlasov equation and its integrable moment closures. J. Geom. Mech. 2, 181–208 (2009)

    MathSciNet  Google Scholar 

  10. Marsden, J., Weinstein, A.: The Hamiltonian structure of the Maxwell–Vlasov equations. Physica D 4, 394–406 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Marsden, J., Weinstein, A., Schmid, R., Spencer, R., Hamiltonian Systems and Symmetry Groups with applications to Plasma Physics. Atti Acad. Sci. Torino Cl. Sci. Fis. Math. Natur. 117, 289–340 (1983)

  12. Milnor, J.: Morse Theory. Princ. Univ, Press, Princeton (1969)

  13. Misiolek, G.: Stability of flows of ideal fluids and the geometry of the groups of diffeomorphisms. Ind. Univ. Math. J. 42(1), 215–235 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Misiolek, G.: Conjugate points in \({\cal {D}}_{\mu }(\mathbb{T}^{2})\). Proc. Am. Math. Soc. 124, 892–977 (1996)

    Article  MathSciNet  Google Scholar 

  15. Morrison, P.J.: The Maxwell–Vlasov equations as a continuous Hamiltonian system. Phys. Lett. 80A, 383–386 (1980)

    Article  Google Scholar 

  16. Preston, S.: For ideal fluids, Eulerian and Lagrangian instabilities are equivalent. Geom. Funct. Anal. 14 (2004)

  17. Preston, S.: On the volumorphism group, the first conjugate point is the hardest. Commun. Math. Phys. 276, 493–513 (2006)

    Article  MathSciNet  Google Scholar 

  18. Schmid, R.: Infinite dimensional lie groups and algebras in mathematics physics. Hindawi Adv. Math. Phys. (2010)

  19. Schmudgen, K.: Unbounded Self-Adjoint Operators on Hilbert Space. Springer, Berlin (2012)

  20. Shnirelman, A.: Generalized fluid flows, their approximations and applications, GAFA. Geom. Funct. Anal. 4, 586–620 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wolibner, W.: Un théorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment longue. Math. Z. 37, 698–726 (1933)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Benn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benn, J. Conjugate points on the symplectomorphism group. Ann Glob Anal Geom 48, 133–147 (2015). https://doi.org/10.1007/s10455-015-9461-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-015-9461-5

Keywords

Mathematics Subject Classification

Navigation