Skip to main content

Advertisement

Log in

Numerical and experimental research of flow control on an NACA 0012 airfoil by local vibration

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A flow control technique by local vibration is proposed to improve the aerodynamic performance of a typical airfoil NACA 0012. Both wind-tunnel experiments and a large eddy simulation (LES) are carried out to study the effects of local vibration on drag reduction over a wide range of angles of attack. The application parameters of local vibration on the upper surface of the airfoil are first evaluated by numerical simulations. The mounted position is chosen at 0.065–0.09 of chord length from the leading edge. The influence of oscillation frequency is investigated both by numerical simulations and experiments. The optimal frequencies are near the dominant frequencies of shear layer vortices and wake vortices. The patterns of shear vortices caused by local vibration are also studied to determine the drag reduction mechanism of this flow control method. The results indicate that local vibration can improve the aerodynamic performance of the airfoil. In particular, it can reduce the drag by changing the vortex generation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

x :

coordinate along the length of the airfoil

±y t :

thickness coordinates above and below the line extending along the length of the airfoil

h :

maximum thickness of the airfoil

c :

chord of the airfoil

y v :

vertical position coordinate of the vibrating part

A :

amplitude of vibration

t :

time of vibration

p 1 :

horizontal coordinate of the front end on the vibrating part

p 2 :

horizontal coordinate of the back end on the vibrating part

C L :

airfoil lift coefficient

C D :

airfoil drag coefficient

f :

frequency of vibration

References

  1. WILLIAMS, J. A brief history of British research on boundary layer control for high lift. Boundary Layer Control, Pergamon Press, Oxford, 74–103 (1961)

    Google Scholar 

  2. HEAD, M. R. History of research on boundary layer control for low drag in UK. Boundary Layer and Flow Control, Pergamon Press, Oxford, 104–121 (1961)

    Google Scholar 

  3. FLATT, J. The history of boundary layer control research in the United States of America. Boundary Layer and Flow Control, Pergamon Press, Oxford, 122–143 (1961)

    Google Scholar 

  4. WEIBERG, J. A. and DANNENBERG, R. E. Section characteristics of an NACA 0006 airfoil with area suction near the leading edge. NACA Technical Note, National Advisory Committee for Aeronautics, Washington, D.C., 1–47 (1954)

    Google Scholar 

  5. HUANG, L., HUANG, P. G., LEBEAU, R. P., and HAUSER, T. Numerical study of blowing and suction control mechanism on NACA 0012 airfoil. Journal of Aircraft, 41(5), 1005–1013 (2004)

    Article  Google Scholar 

  6. CORKE, T. C. and POST, M. L. Overview of plasma flow control: concepts, optimization, and applications. 43rd AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, Nevada, 578–563 (2005)

    Google Scholar 

  7. CORKE, T. C., MERTZ, B., and PATEL, M. P. Plasma flow control optimized airfoil. 44th AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, Nevada, 1208–1221 (2006)

    Google Scholar 

  8. POST, M. L. and CORKE, T. C. Separation control using plasma actuators: dynamic stall vortex control on oscillating airfoil. AIAA Journal, 44(12), 3125–3135 (2006)

    Article  Google Scholar 

  9. SUZEN, Y. B., HUANG, P. G., JACOB, J. D., and ASHPIS, D. E. Numerical simulations of plasma based flow control applications. 35th AIAA Fluid Dynamics Conference and Exhibit, American Institute of Aeronautics and Astronautics, Toronto, 4633–4644 (2005)

    Google Scholar 

  10. HASSAN, A. A. and JANAKIRAM, R. D. Effects of zero-mass “synthetic” jets on the aerodynamics of the NACA-0012 airfoil. Journal of the American Helicopter Society, 43(4), 303–311 (1998)

    Article  Google Scholar 

  11. RIZZETTA, D. P., VISBAL, M. R., and STANEK, M. J. Numerical investigation of synthetic-jet flow fields. AIAA Journal, 37(8), 919–927 (1999)

    Article  Google Scholar 

  12. AMITAY, M., SMITH, D. R., KIBENS, V., PAREKH, D. E., and GLEZER, A. Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA Journal, 39(3), 361–370 (2001)

    Article  Google Scholar 

  13. ZHANG, P., WANG, J., and FENG, L. Review of zero-net-mass-flux jet and its application in separation flow control. Science in China Series E: Technological Sciences, 51(9), 1315–1344 (2008)

    Article  Google Scholar 

  14. RAJU, R., MITTAL, R., and CATTAFESTA, L. Dynamics of airfoil separation control using zero-net mass-flux forcing. AIAA Journal, 46(12), 3103–3115 (2008)

    Article  Google Scholar 

  15. SEIFERT, A., DARABI, A., and WYGANSKI, I. Delay of airfoil stall by periodic excitation. Journal of Aircraft, 33(4), 691–698 (1996)

    Article  Google Scholar 

  16. SEIFERT, A., ELIAHU, S., GREENBLATT, D., and WYGNANSKI, I. Use of piezoelectric actuators for airfoil separation control. AIAA Journal, 36(8), 1535–1537 (1998)

    Article  Google Scholar 

  17. HSIAO, F. B., LIANG, P. F., and HUANG, C. Y. High-incidence airfoil aerodynamics improvement by leading-edge oscillating flap. Journal of Aircraft, 35(3), 508–510 (1998)

    Article  Google Scholar 

  18. SINHA, S. K. Flow separation control with microflexural wall vibrations. Journal of Aircraft, 38(3), 496–503 (2001)

    Article  Google Scholar 

  19. KANG, W., ZHANG, J., LEI, P., and XU, M. Computation of unsteady viscous flow around a locally flexible airfoil at low Reynolds number. Journal of Fluids and Structures, 46, 42–58 (2014)

    Article  Google Scholar 

  20. KANG, W., ZHANG, J., and FENG, P. Aerodynamic analysis of a localized flexible airfoil at low Reynolds numbers. Communications in Computational Physics, 11(4), 1300–1310 (2012)

    Article  MATH  Google Scholar 

  21. YARUSEVYCH, S., KAWALL, J. G., and SULLIVAN, P. E. Airfoil performance at low Reynolds numbers in the presence of periodic disturbances. Journal of Fluids Engineering, 128(3), 587–595 (2006)

    Article  Google Scholar 

  22. TANI, I. Low-speed flows involving bubble separations. Progress in Aerospace Sciences, 5, 71–103 (1964)

    Article  Google Scholar 

  23. LIN, J. and PAULEY, L. L. Low-Reynolds-number separation on an airfoil. AIAA Journal, 34(8), 1570–1577 (1996)

    Article  MATH  Google Scholar 

  24. YARUSEVYCH, S., SULLIVAN, P. E., and KAWALL, J. G. On vortex shedding from an airfoil in low-Reynolds-number flows. Journal of Fluid Mechanics, 632, 245–271 (2009)

    Article  MATH  Google Scholar 

  25. YARUSEVYCH, S., SULLIVAN, P. E., and KAWALL, J. G. Coherent structures in an airfoil boundary layer and wake at low Reynolds numbers. Physics of Fluids, 18(4), 44101 (2006)

    Article  Google Scholar 

  26. YARUSEVYCH, S. and BOUTILIER, M. S. H. Vortex shedding of an airfoil at low Reynolds numbers. AIAA Journal, 49(10), 2221–2227 (2011)

    Article  Google Scholar 

  27. LADSON, C. L., BROOKS, C. W., JR, HILL, A. S., and SPROLES, D. W. Computer program to obtain ordinates for NACA airfoils. NASA Technical Memorandum, National Aeronautics and Space Administration, Hampton, Virginia, 1–27 (1996)

    Google Scholar 

  28. VERSTEEG, H. K. and MALALASEKERA, W. An Introduction to Computational Fluid Dynamics: the Finite Volume Method, 2nd ed., Pearson Education, London, 40–113 (2007)

    Google Scholar 

  29. WONG, C. and KONTIS, K. Flow control by spanwise blowing on a NACA 0012. Journal of Aircraft, 44(1), 337–340 (2007)

    Article  Google Scholar 

  30. YUAN, W., XU, H., KHALID, M., and RADESPIEL, R. A parametric study of LES on laminarturbulent transitional flows past an airfoil. International Journal of Computational Fluid, 20(1), 45–54 (2006)

    Article  MATH  Google Scholar 

  31. LISSAMAN, P. B. S. Low-Reynolds-number airfoils. Annual Review of Fluid Mechanics, 15(1), 223–239 (2003)

    Article  MATH  Google Scholar 

  32. MALKIEL, E. and MAYLE, R. E. Transition in a separation bubble. 40th International Gas Turbine and Aeroengine Congress and Exposition, American Society of Mechanical Engineers, Houston, Texas, 752–759 (1995)

    Google Scholar 

  33. MUNDAY, D. and JACOB, J. Active control of separation on a wing with oscillating camber. Journal of Aircraft, 39(1), 187–189 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilong Huang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11532011) and the Fundamental Research Funds for the Central Universities (No. 2017FZA4031)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, B., Ye, S., Wang, G. et al. Numerical and experimental research of flow control on an NACA 0012 airfoil by local vibration. Appl. Math. Mech.-Engl. Ed. 40, 1–12 (2019). https://doi.org/10.1007/s10483-019-2404-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2404-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation