Skip to main content

Advertisement

Log in

Dipeptide Mimetic of the Brain-derived Neurotrophic Factor Prevents Impairments of Neurogenesis in Stressed Mice

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Brain-derived neurotrophic factor (BDNF) plays the central role in the mechanisms of regulation of neurogenesis and neuroplasticity. Impairment of these mechanisms is considered as one of the main etiological factors of depression. Dimeric dipeptide mimetic of BDNF loop 4 bis-(N-monosuccinyl-l-seryl-l-lysine) hexamethylenediamide (GSB-106) was synthesized at the V. V. Zakusov Research Institute of Pharmacology. In vivo experiments revealed significant antidepressant properties of GSB-106 in doses of 0.1-10 mg/kg (intraperitoneally and orally). Effects of GSB-106 on hippocampal neurogenesis were studied in mice subjected to chronic predator stress. Proliferative activity in the subgranular zone of the dental gyrus was assessed immunohistochemically by Ki-67 expression (a marker of dividing cells). It was found that GSB-106 (10 mg/kg, intraperitoneally, 5 days) completely prevents neurogenesis disturbances in stressed mice. These findings suggest that GSB-106 is a promising candidate for the development of antidepressant agents with BDNF-like mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gudasheva TA, Tarasyuk AV, Pomogaibo SV, Logvinov IO, Povarnina PYu, Antipova TA, Seredenin SB. Design and synthesis of dipeptide mimetics of the brain-derived neurotrophic factor. Russ. J. Bioorgan. Chem. 2012;38(3):243-252.

  2. Gudasheva TA, Logvinov IO, Antipova TA, Seredenin SB. Brain-derived neurotrophic factor loop 4 dipeptide mimetic GSB-106 activates TrkB, Erk, and Akt and promotes neuronal survival in vitro. Doklady Biochem. Biophysics. 2013;451(1): 212-214.

    Article  CAS  Google Scholar 

  3. Seredenin SB, Voronina TA, Gudasheva TA, Garibova TL, Molodavkin GM, Litvinova SA, Elizarova EA, Poseva VI. Antidepressant effect of dimeric dipeptide GSB-106, an original low-molecular-weight Mimetic of BDNF. Acta Naturae. 2013;5(4):105-109.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Björkholm C, Monteggia LM. BDNF — a key transducer of antidepressant effects. Neuropharmacology. 2016;102:72-79.

    Article  PubMed  Google Scholar 

  5. Boldrini M, Santiago AN, Hen R, Dwork AJ, Rosoklija GB, Tamir H, Arango V, John Mann J. Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology. 2013;38(6):1068-1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cobb JA, Simpson J, Mahajan GJ, Overholser JC, Jurjus GJ, Dieter L, Herbst N, May W, Rajkowska G, Stockmeier CA. Hippocampal volume and total cell numbers in major depressive disorder. J. Psychiatr. Res. 2013;47(3):299-306.

    Article  PubMed  Google Scholar 

  7. Den Boer JA. Looking beyond the monoamine hypothesis. Eur. Neurol. Rev. 2006;6(1):87-92.

    Google Scholar 

  8. Jiang C, Salton R. The role of neurotrophins in major depressive disorder. Transl. Neurosci. 2013;4(1):46-58.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kee N, Sivalingam S, Boonstra R, Wojtowicz JM. The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J. Neurosci. Methods. 2002;115(1):97-105.

    Article  CAS  PubMed  Google Scholar 

  10. Kempermann G. Adult neurogenesis: stem cells and neuronal development in the adult brain. Oxford, 2006.

  11. Magni LR, Purgato M, Gastaldon C, Papola D, Furukawa TA, Cipriani A, Barbui C. Fluoxetine versus other types of pharmacotherapy for depression. Cochrane Database Syst. 2013. Rev. 7. CD004185.

  12. Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML. BDNF as a biomarker for successful treatment of mood disorders: a systematic & quantitative metaanalysis. J. Affect. Disord. 2015;15(174):432-440.

    Article  Google Scholar 

  13. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476(7361):458-461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wainwright SR, Galea LA. The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSANCAM within the hippocampus. Neural Plast. 2013;2013. ID 805497.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Gudasheva.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 162, No. 10, pp. 448-451, October, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudasheva, T.A., Povarnina, P.Y. & Seredenin, S.B. Dipeptide Mimetic of the Brain-derived Neurotrophic Factor Prevents Impairments of Neurogenesis in Stressed Mice. Bull Exp Biol Med 162, 454–457 (2017). https://doi.org/10.1007/s10517-017-3638-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-017-3638-9

Key Words

Navigation