Skip to main content
Log in

Nano-opto-mechanical characterization of neuron membrane mechanics under cellular growth and differentiation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We designed and fabricated silicon probe with nanophotonic force sensor to directly stimulate neurons (PC12) and measured its effect on neurite initiation and elongation. A single-layer pitch-variable diffractive nanogratings was fabricated on silicon nitride probe using e-beam lithography, reactive ion etching and wet-etching techniques. The nanogratings consist of flexure folding beams suspended between two parallel cantilevers of known stiffness. The probe displacement, therefore the force, can be measured through grating transmission spectrum. We measured the mechanical membrane characteristics of PC12 cells using the force sensors with displacement range of 10 μm and force sensitivity 8 μN/μm. Young’s moduli of 425 ± 30 Pa are measured with membrane deflection of 1% for PC12 cells cultured on polydimethylsiloxane (PDMS) substrate coated with collagen or laminin in Ham’s F-12K medium. In a series of measurements, we have also observed stimulation of directed neurite contraction up to 6 μm on extended probing for a time period of 30 min. This method is applicable to measure central neurons mechanics under subtle tensions for studies on development and morphogenesis. The close synergy between the nano-photonic measurements and neurological verification can improve our understanding of the effect of external conditions on the mechanical properties of cells during growth and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • G. Bao, S. Suresh, Nat. Mater. 2, 715–725 (2003)

    Article  Google Scholar 

  • N. Basso, J.N.M. Heersche, Bone. 30, 347–351 (2002)

    Article  Google Scholar 

  • A.R. Bausch, F. Ziemann et al., Biophys. J. 75, 2038–2049 (1998)

    Google Scholar 

  • M.W. Berns, Sci. Am. 278, 52–7 (1998)

    Article  Google Scholar 

  • D. Bray, Dev. Biol. 102, 379–389 (1984)

    Article  Google Scholar 

  • W.M. Cowan, J.W. Fawcett et al., Science. 225, 1258–1265 (1984)

    Article  Google Scholar 

  • T.J. Dennerll, J. Cell. Biol. 107, 665–674 (1988)

    Article  Google Scholar 

  • N. DePaola, P.F. Davies et al., Proc. Natl. Acad. Sci. U. S. A. 96, 3154 (1999)

    Article  Google Scholar 

  • D.E. Discher, P. Janmey, et al., 310, 1139–1143 (2005)

    Google Scholar 

  • J.W. Goodman, Introduction to Fourier optics (Roberts & Co 2005)

  • A. Gopal, Z. Luo, et al., Solid-state sensors, actuators and microsystems conference, 2007. TRANSDUCERS 2007. International, 1239–1242 (2007)

  • J. Guck, R. Ananthakrishnan et al., Biophys. J. 81, 767–784 (2001)

    Google Scholar 

  • K. Hane, T. Endo et al., Sens Actuators: A. Physical. 97, 139–146 (2002)

    Article  Google Scholar 

  • R.M. Hochmuth, J. Biomech. 33, 15–22 (2000)

    Article  Google Scholar 

  • S.B. Kater, M.P. Mattson et al., Trends. Neurosci. 11, 315–21 (1988)

    Article  Google Scholar 

  • WCSSG. Kim, G. Barbastathis, J. Microelectromechanical Syst. 15, 763–769 (2006)

    Article  Google Scholar 

  • P. Lamoureux, J. Zheng et al., J. Cell. Biol. 118, 655–661 (1992)

    Article  Google Scholar 

  • A.I. Lur’e Three-dimensional problems of the theory of elasticity (Interscience Publishers 1964)

  • A.B. Mathur, G.A. Truskey et al., Biophys. J. 78, 1725–1735 (2000)

    Article  Google Scholar 

  • M. Matsuzaki, N. Honkura et al., Nature. 429, 761–766 (2004)

    Article  Google Scholar 

  • T. Mitchison, M. Kirschner, Neuron. 1, 761–72 (1988)

    Article  Google Scholar 

  • A.W. Moore, L.Y. Jan et al., Hamlet, a binary genetic switch between single- and multiple-dendrite neuron morphology Science 297, 1355–1358 (2002)

    Article  Google Scholar 

  • V. Nesterov, U. Brand. The nonlinear mechanical and elastrical properties of silicon 3D micro probes, euspen. (2004)

  • V. Nesterov, U. Brand, J. Micromechanics Microengineering. 15, 514–520 (2005)

    Article  Google Scholar 

  • V. Nesterov, U. Brand, J. Micromechanics Microengineering. 16, 1116–1127 (2006)

    Article  Google Scholar 

  • D. Purves, J.W. Lichtman, Science. 210, 153–157 (1980)

    Article  Google Scholar 

  • M. Radmacher, M. Fritz et al., Biophys. J. 70, 556–567 (1996)

    Google Scholar 

  • S.D. Senturia Microsystem Design (Kluwer Academic Publishers 2001)

  • A.S. Tischler, L. Greene, Proc. Natl. Acad. Sci. USA. 73, 2424–2428 (1976)

    Article  Google Scholar 

  • L. You, S.C. Cowin et al., J. Biomech. 34, 1375–1386 (2001)

    Article  Google Scholar 

  • X. Zhang, C.C. Chen et al., J. Microelectromechanical Syst. 14, 1187–1197 (2005)

    Article  Google Scholar 

  • X. Zhang, M.P. Scott, et al., J. Microelectro. Mech. Syst. 15 (2006)

  • J. Zheng, P. Lamoureux et al., J. Neurosci. 11, 1117–1125 (1991)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Microelectronics Research Center (MRC) and the Center for Nano and Molecular Science and Technology (CNM) at UT Austin for providing the microfabrication facilities. This study was supported in part by the National Science Foundation Nanoscale Exploratory Research Program (ECS-0609413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopal, A., Luo, Z., Lee, J.Y. et al. Nano-opto-mechanical characterization of neuron membrane mechanics under cellular growth and differentiation. Biomed Microdevices 10, 611–622 (2008). https://doi.org/10.1007/s10544-008-9172-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9172-9

Keywords

Navigation