Skip to main content

Advertisement

Log in

Whole-Brain High-Resolution Structural Connectome: Inter-Subject Validation and Application to the Anatomical Segmentation of the Striatum

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The present study describes extraction of high-resolution structural connectome (HRSC) in 99 healthy subjects, acquired and made available by the Human Connectome Project. Single subject connectomes were then registered to the common surface space to allow assessment of inter-individual reproducibility of this novel technique using a leave-one-out approach. The anatomic relevance of the surface-based connectome was examined via a clustering algorithm, which identified anatomic subdivisions within the striatum. The connectivity of these striatal subdivisions were then mapped on the cortical and other subcortical surfaces. Findings demonstrate that HRSC analysis is robust across individuals and accurately models the actual underlying brain networks related to the striatum. This suggests that this method has the potential to model and characterize the healthy whole-brain structural network at high anatomic resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    Article  CAS  PubMed  Google Scholar 

  • Andersson JL, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20:870–888

    Article  PubMed  Google Scholar 

  • Andreotti J, Jann K, Melie-Garcia L, Giezendanner S, Dierks T, Federspiel A (2014) Repeatability analysis of global and local metrics of brain structural networks. Brain Connect 4:203–220

    Article  PubMed  Google Scholar 

  • Anwander A, Tittgemeyer M, von Cramon D, Friederici A, Knösche T (2007) Connectivity-based parcellation of Broca’s area. Cereb Cortex 17:816–825

    Article  CAS  PubMed  Google Scholar 

  • Barnes KA, Cohen AL, Power JD, Nelson SM, Dosenbach YB, Miezin FM, Petersen SE, Schlaggar BL (2010) Identifying basal ganglia divisions in individuals using resting-state functional connectivity MRI. Front Syst Neurosci, 4:18

    PubMed  PubMed Central  Google Scholar 

  • Bassett DS, Brown JA, Deshpande V, Carlson JM, Grafton ST (2011) Conserved and variable architecture of human white matter connectivity. Neuroimage 54:1262–1279

    Article  PubMed  Google Scholar 

  • Beckmann M, Johansen-Berg H, Rushworth MFS (2009) Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. J Neurosci 29:1175–1190

    Article  CAS  Google Scholar 

  • Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757

    Article  CAS  PubMed  Google Scholar 

  • Besson P, Dinkelacker V, Valabregue R, Thivard L, Leclerc X, Baulac M, Sammler D, Colliot O, Lehéricy S, Samson S, Dupont S (2014a) Structural connectivity differences in left and right temporal lobe epilepsy. Neuroimage 100:135–144

    Article  PubMed  Google Scholar 

  • Besson P, Lopes R, Leclerc X, Derambure P, Tyvaert L (2014b) Intra-subject reliability of the high-resolution whole-brain structural connectome. NeuroImage 102(Part 2):283–293

    Article  PubMed  Google Scholar 

  • Bonilha L, Gleichgerrcht E, Fridriksson J, Rorden C, Breedlove JL, Nesland T, Paulus W, Helms G, Focke NK (2015) Reproducibility of the structural brain connectome derived from diffusion tensor imaging. PloS One 10:e0135247

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchanan CR, Pernet CR, Gorgolewski KJ, Storkey AJ, Bastin ME (2014) Test–retest reliability of structural brain networks from diffusion MRI. Neuroimage 86:231–243

    Article  PubMed  Google Scholar 

  • Calamante F, Tournier J-D, Jackson GD, Connelly A (2010) Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping. Neuroimage 53:1233–1243

    Article  PubMed  Google Scholar 

  • Calamante F, Tournier J-D, Heidemann RM, Anwander A, Jackson GD, Connelly A (2011) Track density imaging (TDI): validation of super resolution property. Neuroimage 56:1259–1266

    Article  PubMed  Google Scholar 

  • Calamante F, Tournier J-D, Kurniawan ND, Yang Z, Gyengesi E, Galloway GJ, Reutens DC, Connelly A (2012) Super-resolution track-density imaging studies of mouse brain: comparison to histology. Neuroimage 59:286–296

    Article  PubMed  Google Scholar 

  • Calamante F, Oh S-H, Tournier J-D, Park S-Y, Son Y-D, Chung J-Y, Chi J-G, Jackson GD, Park C-W, Kim Y-B, Connelly A, Cho Z-H (2013) Super-resolution track-density imaging of thalamic substructures: comparison with high-resolution anatomical magnetic resonance imaging at 7.0T. Hum Brain Mapp 34:2538–2548

    Article  PubMed  Google Scholar 

  • Chao YP, Cho KH, Yeh CH, Chou KH, Chen JH, Lin CP (2009) Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography. Hum Brain Mapp 30:3172–3187

    Article  PubMed  Google Scholar 

  • Cheng H, Wang Y, Sheng J, Kronenberger WG, Mathews VP, Hummer TA, Saykin AJ (2012) Characteristics and variability of structural networks derived from diffusion tensor imaging. Neuroimage 61:1153–1164

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi EY, Yeo BT, Buckner RL (2012) The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol 108:2242–2263

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen MX, Lombardo MV, Blumenfeld RS (2008) Covariance-based subdivision of the human striatum using T1-weighted MRI. Eur J Neurosci 27:1534–1546

    Article  PubMed  Google Scholar 

  • Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. segmentation and surface reconstruction. Neuroimage 9:179–194

    Article  CAS  PubMed  Google Scholar 

  • Deco G, Jirsa VK, McIntosh AR (2011) Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci 12:43–56

    Article  CAS  PubMed  Google Scholar 

  • DeLong M, Georgopoulos A (1981) Handbook of Physiology. The Nervous System. Motor Control. Section 1

  • Derakhshan M, Caramanos Z, Giacomini PS, Narayanan S, Maranzano J, Francis SJ, Arnold DL, Collins DL (2010) Evaluation of automated techniques for the quantification of grey matter atrophy in patients with multiple sclerosis. Neuroimage 52:1261–1267

    Article  PubMed  Google Scholar 

  • Devlin JT, Sillery EL, Hall DA, Hobden P, Behrens TE, Nunes RG, Clare S, Matthews PM, Moore DR, Johansen-Berg H (2006) Reliable identification of the auditory thalamus using multi-modal structural analyses. Neuroimage 30:1112–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Martino A, Scheres A, Margulies DS, Kelly A, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP (2008) Functional connectivity of human striatum: a resting state FMRI study. Cerebral Cortex 18:2735–2747

    Article  CAS  PubMed  Google Scholar 

  • Draganski B, Kherif F, Klöppel S, Cook PA, Alexander DC, Parker GJM, Deichmann R, Ashburner J, Frackowiak RSJ (2008) Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci 28:7143–7152

    Article  CAS  PubMed  Google Scholar 

  • Duda JT, Cook PA, Gee JC (2014) Reproducibility of graph metrics of human brain structural networks. Front Neuroinform 8:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández-Seara MA, Aznárez-Sanado M, Mengual E, Loayza FR, Pastor MA (2009) Continuous performance of a novel motor sequence leads to highly correlated striatal and hippocampal perfusion increases. Neuroimage 47:1797–1808

    Article  PubMed  Google Scholar 

  • Fischl B, Sereno MI, Dale AM (1999a) cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207

    Article  CAS  PubMed  Google Scholar 

  • Fischl B, Sereno MI, Tootell RB, Dale AM (1999b) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284

    Article  CAS  PubMed  Google Scholar 

  • Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355

    Article  CAS  PubMed  Google Scholar 

  • Ford A, McGregor KM, Case K, Crosson B, White KD (2010) Structural connectivity of Broca’s area and medial frontal cortex. Neuroimage 52:1230–1237

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedman DP, Aggleton JP, Saunders RC (2002) Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: combined anterograde and retrograde tracing study in the Macaque brain. J Comp Neurol 450:345–365

    Article  PubMed  Google Scholar 

  • Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, Van Essen DC, Jenkinson M (2013a) The minimal preprocessing pipelines for the human connectome project. Neuroimage 80:105–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu JQ, Jbabdi S, Webster M, Polimeni JR, Van Essen DC, Jenkinson M, Consortium W-MH (2013b) The minimal preprocessing pipelines for the human connectome project. Neuroimage 80:105–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorbach NS, Schutte C, Melzer C, Goldau M, Sujazow O, Jitsev J, Douglas T, Tittgemeyer M (2011) Hierarchical information-based clustering for connectivity-based cortex parcellation. Front Neuroinform 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330

    Article  PubMed  Google Scholar 

  • Haber SN (2011) 11 neuroanatomy of reward: a view from the ventral striatum. Neurobiol Sensat Reward 235

  • Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4–26

    Article  PubMed  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    Article  PubMed  PubMed Central  Google Scholar 

  • Helms G, Draganski B, Frackowiak R, Ashburner J, Weiskopf N (2009) Improved segmentation of deep brain grey matter structures using magnetization transfer (MT) parameter maps. Neuroimage 47:194–198

    Article  PubMed  PubMed Central  Google Scholar 

  • Hikosaka O, Nakamura K, Sakai K, Nakahara H (2002) Central mechanisms of motor skill learning. Curr Opin Neurobiol 12:217–222

    Article  CAS  PubMed  Google Scholar 

  • Johansen-Berg H, Behrens TEJ, Sillery E, Ciccarelli O, Thompson AJ, Smith SM, Matthews PM (2005) Functional–anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb Cortex 15:31–39

    Article  PubMed  Google Scholar 

  • Jueptner M, Frith C, Brooks D, Frackowiak R, Passingham R (1997) Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol 77:1325–1337

    CAS  PubMed  Google Scholar 

  • Kim H, Chupin M, Colliot O, Bernhardt BC, Bernasconi N, Bernasconi A (2012) Automatic hippocampal segmentation in temporal lobe epilepsy: impact of developmental abnormalities. Neuroimage 59:3178–3186

    Article  PubMed  Google Scholar 

  • Klein JC, Behrens TE, Robson MD, Mackay CE, Higham DJ, Johansen-Berg H (2007) Connectivity-based parcellation of human cortex using diffusion MRI: establishing reproducibility, validity and observer independence in BA 44/45 and SMA/pre-SMA. Neuroimage 34:204–211

    Article  PubMed  Google Scholar 

  • Kwon D-H, Kim J-M, Oh S-H, Jeong H-J, Park S-Y, Oh E-S, Chi J-G, Kim Y-B, Jeon BS, Cho Z-H (2012) Seven-tesla magnetic resonance images of the substantia nigra in Parkinson disease. Ann Neurol 71:267–277

    Article  PubMed  Google Scholar 

  • Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, Draganski B, Ashburner J, Frackowiak R (2012) Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage 60:83–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Leh SE, Ptito A, Chakravarty MM, Strafella AP (2007) Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study. Neurosci Lett 419:113–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehéricy S, Ducros M, Van De Moortele P-F, Francois C, Thivard L, Poupon C, Swindale N, Ugurbil K, Kim D-S (2004) Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 55:522–529

    Article  PubMed  Google Scholar 

  • MacLean PD (1972) Cerebral evolution and emotional processes: new findings on the striatal complex. Ann NY Acad Sci 193:137–149

    Article  CAS  PubMed  Google Scholar 

  • Mars RB, Jbabdi S, Sallet J, O’Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann C, Mitchell AS, Baxter MG, Behrens TE, Johansen-Berg H, Tomassini V, Miller KL, Rushworth MF (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31:4087–4100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31:236–250

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa TT, Woolrich M, Luckhoo H, Joensson M, Mohseni H, Kringelbach ML, Jirsa V, Deco G (2014) How delays matter in an oscillatory whole-brain spiking-neuron network model for MEG alpha-rhythms at rest. Neuroimage 87:383–394

    Article  PubMed  Google Scholar 

  • Nanetti L, Cerliani L, Gazzola V, Renken R, Keysers C (2009) Group analyses of connectivity-based cortical parcellation using repeated k-means clustering. Neuroimage 47:1666–1677

    Article  PubMed  Google Scholar 

  • Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 2:849–856

    Google Scholar 

  • O’Muircheartaigh J, Vollmar C, Traynor C, Barker GJ, Kumari V, Symms MR, Thompson P, Duncan JS, Koepp MJ, Richardson MP (2011) Clustering probabilistic tractograms using independent component analysis applied to the thalamus. Neuroimage 54:2020–2032

    Article  PubMed  PubMed Central  Google Scholar 

  • Owen JP, Ziv E, Bukshpun P, Pojman N, Wakahiro M, Berman JI, Roberts TP, Friedman EJ, Sherr EH, Mukherjee P (2013) Test-retest reliability of computational network measurements derived from the structural connectome of the human brain. Brain Connect 3:160–176

    Article  PubMed  PubMed Central  Google Scholar 

  • Parent A (1990) Extrinsic connections of the basal ganglia. Trends Neurosci 13:254–258

    Article  CAS  PubMed  Google Scholar 

  • Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56:907–922

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrin M, Cointepas Y, Cachia A, Poupon C, Thirion B, Riviere D, Cathier P, El Kouby V, Constantinesco A, Le Bihan D, Mangin JF (2008) Connectivity-based parcellation of the cortical mantle using q-ball diffusion imaging. Int J Biomed Imaging 2008:368406

    Article  PubMed  PubMed Central  Google Scholar 

  • Postuma RB, Dagher A (2006) Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cerebral Cortex 16:1508–1521

    Article  PubMed  Google Scholar 

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  Google Scholar 

  • Samu D, Seth AK, Nowotny T (2014) Influence of wiring cost on the large-scale architecture of human cortical connectivity. PLoS Comput Biol 10:e1003557

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Benavides G, Gómez-Ansón B, Sainz A, Vives Y, Delfino M, Peña-Casanova J (2010) Manual validation of FreeSurfer’s automated hippocampal segmentation in normal aging, mild cognitive impairment, and Alzheimer Disease subjects. Psychiatry Res Neuroimaging 181:219–225

    Article  PubMed  Google Scholar 

  • Schubotz RI, Anwander A, Knosche TR, von Cramon DY, Tittgemeyer M (2010) Anatomical and functional parcellation of the human lateral premotor cortex. Neuroimage 50:396–408

    Article  PubMed  Google Scholar 

  • Selemon L, Goldman-Rakic P (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794

    CAS  PubMed  Google Scholar 

  • Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22:888–905

    Article  Google Scholar 

  • Smith RE, Tournier J-D, Calamante F, Connelly A (2015) The effects of SIFT on the reproducibility and biological accuracy of the structural connectome. Neuroimage 104:253–265

    Article  PubMed  Google Scholar 

  • Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, Glasser MF, Hernandez M, Sapiro G, Jenkinson M, Feinberg DA, Yacoub E, Lenglet C, Van Essen DC, Ugurbil K, Behrens TEJ (2013) Advances in diffusion MRI acquisition and processing in the human connectome project. Neuroimage 80:125–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:e42

    Article  PubMed  PubMed Central  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Article  CAS  PubMed  Google Scholar 

  • Styner M, Oguz I, Xu S, Brechbuhler C, Pantazis D, Levitt JJ, Shenton ME, Gerig G (2006) Framework for the Statistical Shape Analysis of Brain Structures using SPHARM-PDM. Insight J 1071:242–250

    Google Scholar 

  • Sugar CA, James GM (2003) Finding the number of clusters in a dataset. J Amer Statistical Assoc 98:750–763

    Article  Google Scholar 

  • Tomassini V, Jbabdi S, Klein JC, Behrens TE, Pozzilli C, Matthews PM, Rushworth MF, Johansen-Berg H (2007) Diffusion-weighted imaging tractography-based parcellation of the human lateral premotor cortex identifies dorsal and ventral subregions with anatomical and functional specializations. J Neurosci 27:10259–10269

    Article  CAS  PubMed  Google Scholar 

  • Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35:1459–1472

    Article  PubMed  Google Scholar 

  • Tournier J, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22:53–66

    Article  Google Scholar 

  • Tournier JD, Calamante F, Connelly A (2013) Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed 26:1775–1786

    Article  PubMed  Google Scholar 

  • Ugurbil K, Xu J, Auerbach EJ, Moeller S, Vu AT, Duarte-Carvajalino JM, Lenglet C, Wu X, Schmitter S, Van de Moortele PF, Strupp J, Sapiro G, De Martino F, Wang D, Harel N, Garwood M, Chen L, Feinberg DA, Smith SM, Miller KL, Sotiropoulos SN, Jbabdi S, Andersson JL, Behrens TE, Glasser MF, Van Essen DC, Yacoub E (2013) Pushing spatial and temporal resolution for functional and diffusion MRI in the human connectome project. Neuroimage 80:80–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uğurbil K, Xu J, Auerbach EJ, Moeller S, Vu AT, Duarte-Carvajalino JM, Lenglet C, Wu X, Schmitter S, Van de Moortele PF, Strupp J, Sapiro G, De Martino F, Wang D, Harel N, Garwood M, Chen L, Feinberg DA, Smith SM, Miller KL, Sotiropoulos SN, Jbabdi S, Andersson JLR, Behrens TEJ, Glasser MF, Van Essen DC, Yacoub E (2013) Pushing spatial and temporal resolution for functional and diffusion MRI in the Human connectome project. Neuroimage 80:80–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaessen MJ, Hofman PA, Tijssen HN, Aldenkamp AP, Jansen JF, Backes WH (2010) The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures. Neuroimage 51:1106–1116

    Article  CAS  PubMed  Google Scholar 

  • Van Essen DC, Ugurbil K (2012) The future of the human connectome. Neuroimage 62:1299–1310

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786

    Article  PubMed  Google Scholar 

  • Verstraete E, Veldink JH, Mandl RCW, van den Berg LH, van den Heuvel MP (2011) Impaired structural motor connectome in amyotrophic lateral sclerosis. PloS One 6:e24239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinh NX, Epps J, Bailey J (2010) Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J Mach Learn Res 11:2837–2854

    Google Scholar 

  • Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17:395–416

    Article  Google Scholar 

  • Welton T, Kent DA, Auer DP, Dineen RA (2014) Reproducibility of graph-theoretic brain network metrics: a systematic review. Brain Connect 5:193–202

    Article  Google Scholar 

  • Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165

    Article  PubMed  Google Scholar 

  • Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C, Bullmore ET (2010) Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 50:970–983

    Article  PubMed  Google Scholar 

  • Zalesky A, Solowij N, Yücel M, Lubman DI, Takagi M, Harding IH, Lorenzetti V, Wang R, Searle K, Pantelis C, Seal M (2012) Effect of long-term cannabis use on axonal fibre connectivity. Brain 135:2245–2255

    Article  PubMed  Google Scholar 

  • Zhang D, Snyder AZ, Fox MD, Sansbury MW, Shimony JS, Raichle ME (2008) Intrinsic functional relations between human cerebral cortex and thalamus. J Neurophysiol 100:1740–1748

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Ivestigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. This work was partially supported by a grant from CPER Nord-Pas de Calais/FEDER DATA Advanced data science and technologies 2015–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Besson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7040 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besson, P., Carrière, N., Bandt, S.K. et al. Whole-Brain High-Resolution Structural Connectome: Inter-Subject Validation and Application to the Anatomical Segmentation of the Striatum. Brain Topogr 30, 291–302 (2017). https://doi.org/10.1007/s10548-017-0548-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-017-0548-0

Keywords

Navigation