Skip to main content

Advertisement

Log in

RACK1 promotes breast carcinoma migration/metastasis via activation of the RhoA/Rho kinase pathway

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

We aimed to gain a mechanistic understanding of the role of RACK1 in breast carcinoma migration/metastasis. Migration assays were conducted in breast carcinoma cell lines. siRNA targeting RACK1 as well as the Rho kinase inhibitor were also applied. Immunoprecipitation and immunofluorescence were used to study the RACK1/RhoA interaction. GTP-Rho pull-down assays were performed to assess the activation of RhoA. We also conducted immunohistochemistry in 160 breast carcinoma samples. Experiments in vitro showed that RACK1 promotes migration via interaction with RhoA and activation of the RhoA/Rho kinase pathway. Immunohistochemistry in 160 samples revealed that RACK1 is strongly correlated with accepted tumor spread indicators and RhoA (all P < 0.05). Kaplan–Meier survival analysis indicated a correlation between higher RACK1 expression and shorter survival times (P < 0.001). RACK1 is a prognostic factor that promotes breast carcinoma migration/metastasis by interacting with RhoA and activating the RhoA/Rho kinase pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McPherson K, Steel CM, Dixon JM (1994) ABC of breast diseases. Breast cancer epidemiology, risk factors and genetics. BMJ 309:1003–1006

    PubMed  CAS  Google Scholar 

  2. Tjan-Heijnen VCG, Bult P, de Widt-Levert LM, Ruers TJ, Beex LVAM (2001) Micro-metastases in axillary lymph nodes: an increasing classification and treatment dilemma in breast cancer due to the introduction of the sentinel lymph node procedure. Breast Cancer Res Treat 70:81–88

    Article  PubMed  CAS  Google Scholar 

  3. Cao XX, Xu JD, Xu JW, Liu XL, Cheng YY, Wang WJ, Li QQ, Chen Q, Xu ZD, Liu XP (2009) RACK1 promotes breast carcinoma proliferation and invasion/metastasis in vitro and in vivo. Breast Cancer Res Treat. doi:10.1007/s10549-009-0657-x (Epub ahead of print)

  4. Cao XX, Xu JD, Liu XL, Xu JW, Wang WJ, Li QQ, Chen Q, Xu ZD, Liu XP (2009) RACK1: a superior independent predictor for poor clinical outcome in breast cancer. Int J Cancer. doi:10.1002/ijc.25120 (Epub ahead of print)

  5. Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci USA 91:839–843

    Article  PubMed  CAS  Google Scholar 

  6. McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ (2002) The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol 62:1261–1273

    Article  PubMed  CAS  Google Scholar 

  7. Kubota T, Yokosawa N, Yokota S, Fujii N (2002) Association of mumps virus V protein with RACK1 results in dissociation of STAT-1 from the alpha interferon receptor complex. J Virol 76:12676–12682

    Article  PubMed  CAS  Google Scholar 

  8. Hermanto U, Zong CS, Li W, Wang LH (2002) RACK1, an insulin-like growth factor I (IGF-I) receptor-interacting protein, modulates IGF-I-dependent integrin signaling and promotes cell spreading and contact with extracellular matrix. Mol Cell Biol 22:2345–2365

    Article  PubMed  CAS  Google Scholar 

  9. Wu Di, Asiedu Michael, Wei Qize (2009) MyoGEF regulates the invasion activity of MDA-MB-231 breast cancer cells through activation of RhoA and RhoC. Oncogene 28:2219–2230

    Article  PubMed  CAS  Google Scholar 

  10. Pillé JY, Denoyelle C, Varet J, Bertrand JR, Soria J, Opolon P, Lu H, Pritchard LL, Vannier JP, Malvy C, Soria C, Li H (2005) Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo. Mol Ther 11:267–274

    Article  PubMed  Google Scholar 

  11. Simpson KJ, Dugan AS, Mercurio AM (2004) Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res 64:8694–8701

    Article  PubMed  CAS  Google Scholar 

  12. van Golen KL, Wu ZF, Qiao XT, Bao LW, Merajver SD (2000) RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res 60:5832–5838

    PubMed  Google Scholar 

  13. Davies R, Budworth J, Riley J, Snowden R, Gescher A, Gant TW (1996) Regulation of P-glycoprotein 1 and 2 gene expression and protein activity in two MCF7/ADR cell line subclones. Br J Cancer 73:307–315

    Article  PubMed  CAS  Google Scholar 

  14. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) Reporting recommendations for tumor marker prognostic studies (REMARK). Breast Cancer Res Treat 100:229–235

    Article  PubMed  Google Scholar 

  15. Boettner B, Van Aelst L (2002) The role of Rho GTPases in disease development. Gene 286:155–174

    Article  PubMed  CAS  Google Scholar 

  16. Buensuceso CS, Woodside D, Huff JL, Plopper GE, O’Toole TE (2001) The WD protein Rack1 mediates protein kinase C and integrin-dependent cell migration. J Cell Sci 114:1691–1698

    PubMed  CAS  Google Scholar 

  17. Schechtman D, Mochly-Rosen D (2001) Adaptor proteins in protein kinase C-mediated signal transduction. Oncogene 20:6339–6347

    Article  PubMed  CAS  Google Scholar 

  18. Sklan EH, Podoly E, Soreq H (2006) RACK1 has the nerve to act: structure meets function in the nervous system. Prog Neurobiol 78:117–134

    Article  PubMed  CAS  Google Scholar 

  19. Imai Y, Suzuki Y, Tohyama M, Wanaka A, Takagi T (1994) Cloning and expression of a neural differentiation-associated gene, p205, in the embryonal carcinoma cell line P19 and in the developing mouse. Brain Res Mol Brain Res 24:313–319

    Article  PubMed  CAS  Google Scholar 

  20. Berns H, Humar R, Hengerer B, Kiefer FN, Battegay EJ (2000) RACK1 is up-regulated in angiogenesis and human carcinomas. FASEB J 14:2549–2558

    Article  PubMed  CAS  Google Scholar 

  21. Yoshiji H, Kuriyama S, Ways DK, Yoshii J, Miyamoto Y, Kawata M, Ikenaka Y, Tsujinoue H, Nakatani T, Shibuya M, Fukui H (1999) Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis. Cancer Res 59:4413–4418

    PubMed  CAS  Google Scholar 

  22. Bouzahzah B, Albanese C, Ahmed F, Pixley F, Lisanti MP, Segall JD, Condeelis J, Joyce D, Minden A, Der CJ, Chan A, Symons M, Pestell RG (2001) Rho family GTPases regulate mammary epithelium cell growth and metastasis through distinguishable pathways. Mol Med 7:816–830

    PubMed  CAS  Google Scholar 

  23. Denoyelle C, Vasse M, Körner M, Mishal Z, Ganné F, Vannier JP, Soria J, Soria C (2001) Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness and metastatic properties of highly invasive breast cancer celllines: an in vitro study. Carcinogenesis 22:1139–1148

    Article  PubMed  CAS  Google Scholar 

  24. Bourguignon LY (2001) CD44-mediated oncogenic signaling and cytoskeleton activation during mammary tumor progression. J Mammary Gland Biol Neoplasia 6:287–297

    Article  PubMed  CAS  Google Scholar 

  25. Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  PubMed  CAS  Google Scholar 

  26. Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  PubMed  CAS  Google Scholar 

  27. Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721

    Article  PubMed  CAS  Google Scholar 

  28. Pertz O, Hodgson L, Klemke RL, Hahn KM (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440:1069–1072

    Article  PubMed  CAS  Google Scholar 

  29. Narumiya S, Tanji M, Ishizaki T (2009) Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev 28:65–76

    Article  PubMed  CAS  Google Scholar 

  30. Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Mastuura Y, Kaibuchi K (1997) Formation of actin stress fibers and focal adhesion enhanced by Rho-kinase. Science 275:1308–1311

    Article  PubMed  CAS  Google Scholar 

  31. Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S (2000) Pharmacological properties of Y-27632, a specific inhibitor of Rho-associated kinase. Mol Pharmacol 57:976–983

    PubMed  CAS  Google Scholar 

  32. Sahai E, Ishizaki T, Narumiya S, Treisman R (1999) Transformation mediated by Rho requires activity of ROCK kinases. Curr Biol 9:136–145

    Article  PubMed  CAS  Google Scholar 

  33. Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T, Narumiya S (1999) An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat Med 5:221–225

    Article  PubMed  CAS  Google Scholar 

  34. Del Re DP, Miyamoto S, Brown JH (2008) Focal adhesion kinase as a RhoA-activable signaling scaffold mediating Akt activation and cardiomyocyte protection. J Biol Chem 283:35622–35629

    Article  PubMed  Google Scholar 

  35. Nakaya Y, Sukowati EW, Wu Y, Sheng G (2008) RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation. Nat Cell Biol 10:765–775

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge grant supports received from National Nature Science Foundation of China (No. 30870972 and No. 30872971).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Ping Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2010_955_MOESM1_ESM.ppt

Immunochemical analysis of clinical cases. Representative immunochemical staining of RACK1 and RhoA from 160 clinical cases is shown. (PPT 11948 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, XX., Xu, JD., Xu, JW. et al. RACK1 promotes breast carcinoma migration/metastasis via activation of the RhoA/Rho kinase pathway. Breast Cancer Res Treat 126, 555–563 (2011). https://doi.org/10.1007/s10549-010-0955-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0955-3

Keywords

Navigation