Skip to main content
Log in

Replication Route Synthesis of Mesoporous Titanium–Cobalt Oxides and Their Photocatalytic Activity in the Degradation of Methyl Orange

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Mesoporous Ti–Co oxides were synthesized via a replication route, using a 3-D wormlike mesoporous silica as template and tetra-tert-butyl orthotitanate (TBOT) and Co(NO3)2 as source materials. The prepared materials were characterized by X-ray diffraction (XRD), N2-physisorption, TEM, EDS, and UV/Vis-DRS and found to possess a spherical morphology and a 3-D wormhole-like mesoporous structure, with the average pore size between 4.5 and 16.0 nm. The pore walls consisted mainly of a cobalt-incorporated anatase phase. The Co3+ ions were generated in the replicated mesoporous Co–Ti oxides, via the transfer of electrons from Co2+ to Ti4+ ions. The formation of cobalt-incorporated anatase phase and Co3+ ions were both favored by larger Co/Ti atomic ratios and by relatively low calcination temperatures. The specific surface area decreased and the mesopore sizes increased, with increasing Co/Ti atomic ratio or calcination temperature. The average crystal size of the anatase phase decreased with increasing Co/Ti atomic ratio but increased with increasing calcination temperature. The photocatalytic activity of the replicated mesoporous Co–Ti oxides in the degradation of methyl orange dye was investigated. It was observed that the photocatalytic activity increased with increasing Co/Ti atomic ratio and exhibited a maximum with increasing calcination temperature. With the exception of those prepared at too high calcination temperatures, the replicated mesoporous Co–Ti oxides were much more active than the pure titania. It is concluded that, in addition to a higher diffusion, the cobalt-containing anatase, as the active phase, and the Co3+ ions, as the active sites, are responsible for the high photocatalytic activity of the replicated mesoporous Co–Ti oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Chuah GK, Hu X, Zhan P, Jaenicke S (2002) J Mol Catal A: Chem 181:25–31

    Article  CAS  Google Scholar 

  2. Sage V, Clark JH, Macquarrie DJ (2003) J Mol Catal A: Chem 198:349–358

    Article  CAS  Google Scholar 

  3. Kalogeras IM, Vassilikou-Dova A, Neagu ER (2001) Mater Res Innov 4:322–333

    Article  CAS  Google Scholar 

  4. Matthias G, Wark M, Wörle D, Schulz-Ekloff G (2000) Angew Chem 112:167–170

    Article  Google Scholar 

  5. Pan A, Zheng H, Yang Z, Liu F, Ding Z, Qian Y (2003) Mater Res Bull 38:789–796

    Article  CAS  Google Scholar 

  6. Coradin T, Larionova J, Smith AA, Rogez G, Cléac R, Guéin C, Blondin G, Winpenny REP, Sanchez C, Mallah T (2002) Adv Mater 14:896–898

    Article  CAS  Google Scholar 

  7. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710–712

    Article  CAS  Google Scholar 

  8. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW et al (1992) J Am Chem Soc 114:10834–10843

    Article  CAS  Google Scholar 

  9. Ciesla U, Schueth F (1999) Microporous Mesoporous Mater 27:131–149

    Article  CAS  Google Scholar 

  10. Corma A, Kumar D (1998) In Mesoporous molecular sieves 1998, vol 117. Elsevier Science Publ B V, Amsterdam, pp 201–222

  11. Taguchi A, Schuth F (2005) Microporous Mesoporous Mater 77:1–45

    Article  CAS  Google Scholar 

  12. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  13. Huo Q, Margolese DI, Clesla U, Feng P, Gler TE, Sieger P, Leon R, Petroff PM, Schuth F, Stucky GD (1994) Nature 368:317–321

    Article  CAS  Google Scholar 

  14. Tanev PT, Pinnavaia TJ (1995) Science 267:865–867

    Article  CAS  Google Scholar 

  15. Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Science 269:1242

    Article  Google Scholar 

  16. Tanev PT, Chibwe M, Pinnavaia TJ (1994) Nature 368:321–323

    Article  CAS  Google Scholar 

  17. Antonelli DM, Ying JY (1995) Angew Chem (International Edition in English) 34:2014–2017

  18. Antonelli DM, Nakahira A, Ying JY (1996) Inorg Chem 35:3126

    Article  CAS  Google Scholar 

  19. Tian Z-R, Tong W, Wang J-Y, Duan N-G, Krishnan VV, Suib SL (1997) Science 276:926–930

    Article  CAS  Google Scholar 

  20. Srivastava DN, Perkas N, Gedanken A, Felner I (2002) J Phys Chem B 106:1878–1883

    Article  CAS  Google Scholar 

  21. Yuan M, Shan Z, Tian B, Tu B, Yang P, Zhao D (2005) Microporous Mesoporous Mater 78:37–41

    Article  CAS  Google Scholar 

  22. Shyue JJ, DeGuire MR (2005) J Am Chem Soc 127:12736–12742

    Article  CAS  Google Scholar 

  23. Perkas N, Palchik O, Brukental I, Nowik I, Gofer Y, Koltypin Y, Gedanken A (2003) J Phys Chem B 107:8772–8778

    Article  CAS  Google Scholar 

  24. Liu Z, Zhang J, Han B, Du J, Mu T, Wang Y, Sun Z (2005) Microporous Mesoporous Mater 81:169–174

    Article  CAS  Google Scholar 

  25. Ruckenstein E, Chao ZS (2001) Nano Lett 1:739–742

    Article  CAS  Google Scholar 

  26. Wu G, Wang X, Chen B, Li J, Zhao N, Wei W, Sun Y (2007) Appl Catal A: Gen 329:106–111

    Article  CAS  Google Scholar 

  27. Kruk M, Jaroniec M, Ryoo R, Joo SH (2000) J Phys Chem B 104:7960–7968

    Article  CAS  Google Scholar 

  28. Hashimoto K, Wasada K, Osaki M, Shono E, Adachi K, Toukai N, Kominami H, Kera Y (2001) Appl Catal B: Environ 30:429–436

    Article  CAS  Google Scholar 

  29. Buciuman FC, Patcas F, Hahn T (1999) Chem Eng Process 38:563–569

    Article  CAS  Google Scholar 

  30. Chen H, Sayari A, Adnot A, Larachi F (2001) Appl Catal B: Environ 32:195–204

    Article  Google Scholar 

  31. Bessell S (1993) Appl Catal A: Gen 96:253–268

    Article  CAS  Google Scholar 

  32. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  33. Yang Q, Choi H, Dionysiou DD (2007) Appl Catal B: Environ 74:170–178

    Article  CAS  Google Scholar 

  34. Gracien EB, Shen J, Sun X, Liu D, Li M, Yao S, Sun J (2007) Thin Solid Films 515:5287–5297

    Article  CAS  Google Scholar 

  35. Kazachkov SG, Chashechnikova IT, Vorotyntsev VM, Golodets GI (1989) Petrol Chem USSR 29:123–129

    Google Scholar 

  36. Sun C, Tao L, Liang H, Huang C, Zhai H, Chao Z (2006) Mater Lett 60:2115–2118

    Article  CAS  Google Scholar 

  37. Ryoo R, Joo SH, Jun S (1999) J Phys Chem B 103(37):7743–7746

    Article  CAS  Google Scholar 

  38. Wang Y, Chen S, Tang X, Palchik O, Zaban A, Koltypin Y, Gedanken A (2001) J Mater Chem 11:521–526

    Article  CAS  Google Scholar 

  39. Wang Y, Tang X, Yin L, Huang W, Hacohen YR, Gedanken A (2000) Adv Mater 12:1183–1186

    Article  CAS  Google Scholar 

  40. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  41. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouqerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  42. Kruk M, Jaroniec M (2001) Chem Mater 13:3169–3183

    Article  CAS  Google Scholar 

  43. Brik Y, Kacimi M, Ziyad M, Bozon-Verduraz F (2001) J Catal 202:118–128

    Article  CAS  Google Scholar 

  44. Anpo M, Takeuchi M (2003) J Catal 216:505–516

    Article  CAS  Google Scholar 

  45. Anpo M (2004) Bull Chem Soc Japan 77:1427–1442

    Article  CAS  Google Scholar 

  46. Iketani K, Sun R-D, Toki M, Hirota K, Yamaguchi O (2004) Mater Sci Eng B: Solid-State Mater Adv Technol 108:187–193

    Google Scholar 

  47. Martin ST, Morrison CL, Hoffmann MR (1994) J Phys Chem 98:13695–13704

    Article  CAS  Google Scholar 

  48. Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Chem Mater 17:6349–6353

    Article  CAS  Google Scholar 

  49. Vorontsov AV, Dubovitskaya VP (2004) J Catal 221:102–109

    Article  CAS  Google Scholar 

  50. Wu JCS, Chen C (2004) J Photochem Photobiol A: Chem 163:509–515

    Article  CAS  Google Scholar 

  51. Nozik AJ (1993) In: Ollis DF, Al-Ekabi H (eds) Photocatalytic purification and treatment of water and Air [M]. Elsevier, Amsterdam, p 391

  52. Martin ST, Herrmann H, Choi WY, Hoffmann MR (1994) Faraday Trans 90:3315–3323

    Article  CAS  Google Scholar 

  53. Lever ABP (1984) Inorganic electronic spectra. Elsevier, Amsterdam, p 480

    Google Scholar 

  54. Lin J, Yu JC, Lo D, Lam SK (1999) J Catal 183:368–372

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to the financial support from the Program for New Century Excellent Talents in University, the Ministry of Education of P. R. China; and the Program for Lotus Scholar in Hunan Province, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eli Ruckenstein or Zi-Sheng Chao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, CG., Tao, L., Fan, ML. et al. Replication Route Synthesis of Mesoporous Titanium–Cobalt Oxides and Their Photocatalytic Activity in the Degradation of Methyl Orange. Catal Lett 129, 26–38 (2009). https://doi.org/10.1007/s10562-008-9835-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9835-4

Keywords

Navigation