Skip to main content
Log in

A parameterized Douglas–Rachford algorithm

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Based on a reparametrization of the Douglas–Rachford algorithm, we provide a principle of finding the least norm solution for a sum of two maximally monotone operators. The algorithm allows us to find the least norm solution to a sum of monotone operators, and even generally to find the least norm primal-dual solution to inclusions with mixtures of composite monotone operators. Three numerical results illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alotaibi, A., Combettes, P.L., Shahzad, N.: Best approximation from the Kuhn–Tucker set of composite monotone inclusions. Numer. Funct. Anal. Optim. 36, 1513–1532 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alwadani, S., Bauschke, H.H., Moursi, W.M., Wang, X.: On the asymptotic behaviour of the Aragón Artacho–Campoy algorithm. Oper. Res. Lett. 46, 585–587 (2018)

    Article  MathSciNet  Google Scholar 

  3. Aragón Artacho, F.J., Campoy, R.: A new projection method for finding the closets point in the intersection of convex sets. Comput. Optim. Appl. 69, 99–132 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Théra, M.: A general duality principle for the sum of two operators. J. Convex Anal. 3, 1–24 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Borwein, J.M.: Dykstra’s alternating projection algorithm for two sets. J. Approx. Theory 79, 418–443 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauschke, H.H., Boţ, R.I., Hare, W.L., Moursi, W.M.: Attouch–Théra duality revisited: paramonotonicity and operator splitting. J. Approx. Theory 164, 1065–1084 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  8. Bauschke, H.H.: A note on the paper by Eckstein and Svaiter on “General projective splitting methods for sums of maximal monotone operators”. SIAM J. Control Optim. 48, 2513–2515 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bauschke, H.H., Moursi, W.M.: On the Douglas–Rachford algorithm. Math. Program. 164, 263–284 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boţ, R.I., Csetnek, E.R., Heinrich, A., Hendrich, C.: On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems. Math. Program. 150(Ser. A), 251–279 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Boţ, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Boţ, R.I., Csetnek, E.R., Heinrich, A.: A primal-dual splitting algorithm for finding zeros of sums of maximal monotone operators. SIAM J. Optim. 23, 2011–2036 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boţ, R.I., Hendrich, C.: A Douglas–Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23, 2541–2565 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Briceño-Arias, L.M., Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21, 1230–1250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6), 475–504 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16(4), 727–748 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20, 307–330 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Combettes, P.L.: Systems of structured monotone inclusions: duality, algorithms, and applications. SIAM J. Optim. 23, 2420–2447 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(2), 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mordukhovich, B.S., Nam, N.M.: An Easy Path to Convex Analysis and Applications, Synthesis Lectures on Mathematics and Statistics, Morgan & Claypool Publishers, Williston, VT (2014)

  22. Mordukhovich, B.S., Nam, N.M., Salinas Jr., J.: Solving a generalized Heron problem by means of convex analysis. Am. Math. Mon. 119, 87–99 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mordukhovich, B.S., Nam, N.M., Salinas Jr., J.: Applications of variational analysis to a generalized Heron problem. Appl. Anal. 91, 1915–1942 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moreau, J.-J.: Proximité et dualité dans un espace hilbertien. Bull. de la Société Math. France 93, 273–299 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  25. Svaiter, B.F.: On weak convergence of the Douglas–Rachford method. SIAM J. Control Optim. 49, 280–287 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38, 667–681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, X.: Self-dual regularization of monotone operators via the resolvent average. SIAM J. Optim. 21, 438–462 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the associate editor and two anonymous referees for suggestions and comments. Dongying Wang was supported by Grants of Xianfu Wang. Xianfu Wang was partially supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, X. A parameterized Douglas–Rachford algorithm. Comput Optim Appl 73, 839–869 (2019). https://doi.org/10.1007/s10589-019-00088-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00088-8

Keywords

Mathematics Subject Classification

Navigation