Skip to main content
Log in

Efficient nucleophilic substitution in self-assembled monolayer of dithiol on gold

  • SHORT COMMUNICATION
  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Many self-assembled monolayers of dithiols on gold feature terminal SH groups, the nucleophilic nature of which provides opportunities for covalent binding of electrophiles through sulfide linkages. This work describes an efficient coupling of dithiol derivative of 4,4'-dihydroxybiphenyl immobilized on Au surface with a mesylate ester present in the solution. The procedure did not require a glove box or any specialized equipment and provided a high surface concentration of the redox active product. The modified Au-SAM electrode was investigated electroanalytically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2

Similar content being viewed by others

References

  1. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103.

    Article  CAS  Google Scholar 

  2. Maoz, R.; Netzer, L.; Gun, J.; Sagiv, J. J. Chim. Phys. Phys.–Chim. Biol. 1988, 85, 1059.

  3. Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481.

    Article  CAS  Google Scholar 

  4. Clark, J. H.; Macquarrie, D. J. Chem. Soc. Rev. 1996, 25, 303.

  5. (a) Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nano Lett., 2006, 6, 458. (b) Tour, J. M. Acc. Chem. Res. 2000, 33, 791. (c) Sugawara, T.; Matsushita, M. M. J. Mater. Chem. 2009, 19, 1738.

  6. (a) Wang, Y.; Zhou, Y.; Sokolov, J.; Rigas, B.; Levon, K.; Rafailovich, M. Biosens. Bioelectron. 2008, 24, 162. (b) Chen, H.; Heng, C. K.; Puiu, P. D.; Zhou, X. D.; Lee, A. C.; Lim, T. M.; Tan, S. N. Anal. Chim. Acta 2005, 554, 52. (c) Levicky, R.; Herne, T. M.; Tarlov, M. J.; Satija, S. K. J. Am. Chem. Soc. 1998, 120, 9787. (d) Bonanni, B.; Bizzarri, A. R.; Cannistraro, S. J. Phys. Chem. B 2006, 110, 14574. (e) Castellana, E. T.; Cremer, P. S. Surf. Sci. Rep. 2006, 61, 429.

  7. (a) Drechsler, U.; Erdogan, B.; Rotello, V. M. Chem.–Eur. J. 2004, 10, 5570. (b) Daniel, M.-C.; Astruc, D. Chem. Rev. 2004, 104, 293. (c) Shimizu, T.; Teranishi, T.; Hasegawa, S.; Miyake, M. J. Phys. Chem. B 2003, 107, 2719.

  8. (a) Azzaroni, O.; Cipollone, M.; Vela, M. E.; Salvarezza, R. C. Langmuir 2001, 17, 1483. (b) Brunoro, G.; Frignani, A.; Colledan, A.; Chiavari, C. Corros. Sci. 2003, 45, 2219. (c) Whelan, C. M.; Kinsella, M.; Carbonell, L.; Ho, H.-M.; Maex, K. Microelectron. Eng. 2003, 70, 551.

  9. Rogers, J. A.; Nuzzo, R. G. Mater. Today 2005, 8, 50.

    Article  CAS  Google Scholar 

  10. (a) Paciotti, G. F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R. E.; Tamarkin, L. Drug Delivery 2004, 11, 169. (b) van Bommel, K. J. C.; Friggeri, A.; Mateman, D.; Geurts, F. A. J.; van Leerdam, K. G. C.; Verboom, W.; van Veggel, F. C. J. M.; Reinhoudt, D. N. Adv. Funct. Mater. 2001, 11, 140.

  11. Vericat, C.; Vela, M. E.; Benitez, G.; Carrob, P.; Salvarezza, R. C. Chem. Soc. Rev. 2010, 39, 1805.

    Article  CAS  Google Scholar 

  12. Fryxell, G. E.; Rieke, P. C.; Wood, L. L.; Engelhard, M. H.; Williford, R. E.; Graff, G. L.; Campbell, A. A.; Wiacek, R. J.; Lee, L.; Halverson, A. Langmuir 1996, 12, 5064.

    Article  CAS  Google Scholar 

  13. (a) Baker, M. V.; Watling, J. D. Tetrahedron Lett. 1995, 36, 4623. (b) Baker, M. V.; Watling, J. D. Langmuir 1997, 13, 2027.

  14. (a) Balachander, N.; Sukenik, C. N. Langmuir 1990, 6, 1621. (b) Wasserman, S. R.; Tao, Y.-T.; Whitesides, G. M. Langmuir 1989, 5, 1074.

  15. Korybut-Daszkiewicz, B.; Bilewicz, R.; Woźniak, K. Coord. Chem. Rev. 2010, 254, 1637.

    Article  CAS  Google Scholar 

  16. (a) McConnell, A. J.; Wood, C. S.; Neelakandan, P. P.; Nitschke, J. R. Chem. Rev. 2015, 115, 7729. (b) Woźny, M.; Pawłowska, J.; Osior, A.; Świder, P.; Bilewicz, R.; Korybut-Daszkiewicz, B. Chem. Sci. 2014, 5, 2836. (c) Woźny, M.; Pawłowska, J.; Tomczyk, K. M.; Bilewicz, R.; Korybut-Daszkiewicz, B. Chem. Commun. 2014, 50, 13718.

  17. Kamiński, R.; Kowalski, J.; Mames, I.; Korybut-Daszkiewicz, B.; Domagała, S.; Woźniak, K. Eur. J. Inorg. Chem. 2011, 479.

  18. Wawrzyniak, U. E.; Woźny, M.; Kowalski, J.; Domagala, S.; Maicka, E.; Bilewicz, R.; Woźniak, K.; Korybut-Daszkiewicz, B. Chem.–Eur. J. 2009, 15, 149.

  19. Laviron, E. J. Electroanal. Chem. 1979, 101, 19.

    Article  CAS  Google Scholar 

Download references

This work was supported by the National Science Center of Poland (OPUS No. 2014/13/B/ ST5/03727). K.M.T. is supported by the Foundation for Polish Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Woźny.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2017, 53(1), 97–100

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woźny, M., Tomczyk, K.M. & Wawrzyniak, U.E. Efficient nucleophilic substitution in self-assembled monolayer of dithiol on gold. Chem Heterocycl Comp 53, 97–100 (2017). https://doi.org/10.1007/s10593-017-2027-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-017-2027-7

Keywords

Navigation