Skip to main content

Advertisement

Log in

Stem cells for reprogramming: could hUMSCs be a better choice?

  • Review Paper
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Human umbilical cord mesenchymal stem cells (hUMSC) are primitive multipotent cells capable of differentiating into cells of different lineages. They can be an alternative source of pluripotent cells since they are ethically and regulatory approved, are easily obtained and have low immunogenicity compared to embryonic stem cells which are dogged with numerous controversies. hUMSC can be a great source for cell and transplantation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilić J, Pekarik V, Tiscornia G, Edel M, Boué S, Izpisúa Belmonte JC (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26:1276–1284

    Article  CAS  Google Scholar 

  • Anzalone R, Lo Iacono M, Corrao S, Magno F, Loria T, Cappello F, Zummo G, Farina F, La Rocca G (2010) New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiate capacity. Stem Cells Dev 19:423–438

    Article  CAS  Google Scholar 

  • Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584

    Article  CAS  Google Scholar 

  • Blank U, Karlsson G, Karlsson S (2008) Signaling pathways governing stem cell fate. Blood 111:492–503

    Article  CAS  Google Scholar 

  • Blum B, Benvenisty N (2005) Differentiation in vivo and in vitro of human embryonic stem cells. In: Bongso A, Lee EH (eds) Stem cells: from bench to bedside. World Scientific, Singapore, pp 123–143

    Chapter  Google Scholar 

  • Blum B, Benvenisty N (2008) The tumorigenicity of human embryonic stem cells. Adv Cancer Res 100:133–158

    Article  Google Scholar 

  • Brenner MK (2004) Hematopoietic stem cell transplantation for autoimmune disease; limits and future potential. Best Pract Res Clin Haematol 17:359–374

    Article  CAS  Google Scholar 

  • Brimble SN, Zeng X, Weiler DA, Luo Y, Liu Y, Lyons IG, Freed WJ, Robins AJ, Rao MS, Schulz TC (2004) Karyotypic stability, genotyping, differentiation, feeder-free maintenance and gene expression sampling in three human embryonic stem cells lines derived prior to Aug 9, 2001. Stem Cells Dev 13:585–595

    Google Scholar 

  • Buja LM, Vela D (2010) Immunologic and inflammatory reactions to exogenous stem cells. J Am Coll Cardiol 56:1693–1700

    Article  CAS  Google Scholar 

  • Cai J, Li W, Su H, Qin D, Yang J, Zhu F, Xu J, He W, Guo X, Labuda K, Peterbauer A, Wolbank S, Zhong M, Li Z, Wu W, So KF, Redl H, Zeng L, Esteban MA, Pei D (2010) Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem 285:11227–11234

    Article  CAS  Google Scholar 

  • Cao H, Qian H, Xu W, Zhu W, Zhang X, Chen Y, Wang M, Yan Y, Xie Y (2010) Mesenchymal stem cells derived from human umbilical cord ameliorate ischemia/reperfusion-induced acute renal failure in rats. Biotechnol Lett 32:725

    Article  CAS  Google Scholar 

  • Chambers I, Tomlison SR (2009) The transcriptional foundation of pluripotency. Development 136:2311–2322

    Article  CAS  Google Scholar 

  • Chang YJ, Shih DT, Tseng CP, Hsieh TB, Lee DC, Hwang SM (2006a) Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells 24:679–685

    Article  CAS  Google Scholar 

  • Chang YJ, Tseng CP, Hsu LF, Hsieh TB, Hwang SM (2006b) Characterization of two populations of mesenchymal progenitor cells in umbilical cord blood. Cell Biol Int 30:495–499

    Article  CAS  Google Scholar 

  • Chao KC, Chao KF, Fu YS, Liu SH (2008) Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS ONE 3:e1451

    Article  Google Scholar 

  • Chen Y, Shao JZ, Xiang XL, Dong XJ, Zhang GR (2008) Mesenchymal stem cells; A promising candidate in regenerative medicine. Int J Biochem Cell Biol 40:815–820

    Article  CAS  Google Scholar 

  • Chunliang L, Junmei Z, Guilai S, Yu M, Yang Y, Junjie G, Hongyao Y, Shibo J, Zhe W, Fang C, Ying J (2009) Pluripotency can be rapidly and efficiently induced in human amniotic fluid derived cells. Hum Mol Genet 18:4340–4349

    Article  Google Scholar 

  • Dazzi F, Fozza C (2007) Diseases relapse after hematopoietic stem cell transplantation; risk factors and treatment. Best Pract Res Clin Haematol 20:311–327

    Article  CAS  Google Scholar 

  • Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrew PW (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54

    Article  CAS  Google Scholar 

  • Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, Mandelboim O, Benvenisty N (2002) Characterisation of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 99:9864–9869

    Google Scholar 

  • Eggan K, Baldwin K, Tackett M, Osborne J, Gogos J, Chess A, Axel R, Jaenisch R (2004) Mice cloned from olfactory sensory neurons. Nature 428:44–49

    Article  CAS  Google Scholar 

  • Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    Article  CAS  Google Scholar 

  • Findikli N, Candan NZ, Kahraman S (2006) Human embryonic stem cell culture; current limitations and novel strategies. Reprod Biomed Online 13:581–590

    Article  CAS  Google Scholar 

  • Fortunel N, Batard P, Hatzfeld A, Monier MN, Panterne B, Lebkowski J, Hatzfeld J (1998) High proliferative potential quiescent cells; a working model to study primitive quiescent hematopoietic cells. J Cell Sci 111:1867–1875

    CAS  Google Scholar 

  • Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24:115–124

    Article  Google Scholar 

  • Fumio A, Toshio J (2007) Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Ann N Y Acad Sci 1106:41–53

    Article  Google Scholar 

  • Gutierrez- Rodriguez M, Reyes-Maldonado E, Mayani H (2000) Characterization of the adherent cells developed in Dexter-type long-term cultures from human umbilical cord blood. Stem Cells 18:46–52

    Article  CAS  Google Scholar 

  • Herrero C, Pérez-Simón JA (2010) Immunomodulatory effect of mesenchymal stem cells. Braz J Med Biol Res 43:425–430

    Article  CAS  Google Scholar 

  • Huang X, Cho S, Spangrude GJ (2007) Hematopoietic stem cells; generation and self renewal. Cell Death Differ 14:1851–1859

    Article  CAS  Google Scholar 

  • Ishige I, Nagamura T, Honda MJ, Harnprsopwat R, Kido M, Sugimoto M, Nakauchi H, Tojo A (2009) Comparison of mesenchymal stem cells derived from arterial, venous and Wharton’s jelly explants of human umbilical cord. Int J Hematol 90:261–269

    Article  Google Scholar 

  • Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol Med 6:88–95

    Google Scholar 

  • Jung Y, Song J, Shiozawa Y, Wang J, Wang Z, Williams B, Havens A, Schneider A, Ge C, Franceschi RT, McCauley LK, Krebsbach PH, Taichman RS (2008) Hematopoietic stem cells regulate mesenchymal stromal cell induction into osteoblasts thereby participating in the formation of stem cell niche. Stem Cells 26:2042–2051

    Article  Google Scholar 

  • Kang XQ, Zang WJ, Bao LJ, Li DL, Xu XL, Yu XJ (2006) Differentiating characterization of human umbilical cord blood-derived mesenchymal stem cells in vitro. Cell Biol Int 30:569–575

    Article  CAS  Google Scholar 

  • Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, Tukun A, Uckan D, Can A (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25:319–331

    Article  CAS  Google Scholar 

  • Kato Y, Tani T, Tsunada y (2000) Cloning of calves from various somatic cell types of male and female adult newborn and fetal cows. J Reprod Fertil 120:231–237

    Article  CAS  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  CAS  Google Scholar 

  • Kim SW, Han H, Chae GT, Lee SH, Bo S, Yoon JH, Lee YS, Lee KS, Park HK, Kang KS (2006) Successful stem cell therapy using umbilical cord blood-derived multipotent stem cells for Buerger’s disease and ischemic limb disease animal model. Stem Cells 24:1620–1626

    Article  Google Scholar 

  • Kim JY, Jeon HB, Yang YS, Oh W, Chang JW (2010) Application of human umbilical cord blood-derived mesenchymal stem cells in disease models. World J Stem Cells 2:34–38

    Article  Google Scholar 

  • Kobayashi H, Butler JM, O’Donnell R, Kobayashi M, Ding BS, Bonner B, Chiu VK, Nolan DJ, Shido K, Benjamin L, Rafii S (2010) Angiocrine factors from Akt-activated endothelial cells balance self renewal and differentiation of hematopoietic stem cells. Nat Cell Biol 12:1046–1056

    Article  CAS  Google Scholar 

  • Konrad H, Kathrin P (2009) Epigenetic and induced pluripotency. Development 136:509–523

    Article  Google Scholar 

  • Krampera M, Pasini A, Pizzolo G, Cosmi L, Romagnani S, Annunziato F (2006) Regenerative and immunomodulatory potential of mesenchymal stem cells. Curr Opin Pharmacol 6:435–4180

    Article  CAS  Google Scholar 

  • Lagasse E, Connors H, Dhalimy AL, Reitsma M, Dohse M, Osborne l, Wang X, Finegold M, Weissman L, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234

    Article  CAS  Google Scholar 

  • Lee MW, Choi J, Yang MS, Moon YJ, Park JS, Kim HC, Kim YJ (2004) Mesenchymal stem cells from cryopreserved human umbilical cord blood. Biochem Biophys Res Commun 320:273–278

    Article  CAS  Google Scholar 

  • Lee HJ, Lee JK, Lee H, Shin JW, Carter JE, Sakamoto T, Jin HK, Bae JS (2010) The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer’s disease. Neurosci Lett 481:30–35

    Article  CAS  Google Scholar 

  • Li C, Zhou J, Shi G, Ma Y, Yang Y, Gu J, Yu H, Jin S, Wei Z, Chen F, Jin Y (2009) Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Hum Mol Genet 18:4340–4349

    Article  CAS  Google Scholar 

  • Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, Han ZB, Xu ZS, Lu YX, Liu D, Chen ZZ, Han ZC (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with haematopoiesis-supportive function and other potentials. Haematologica 91:1017–1026

    CAS  Google Scholar 

  • Lu X, Alshemali S, Wynter EA, Dickinson A (2010) Mesenchymal stem cells from CD34 (-) human umbilical cord blood. Transfus Med 20:178–184

    Article  CAS  Google Scholar 

  • Luis TC, Weerkamp F, Naber BA, Baert MR, de Haas EF, Nikolic T, Heuvelmans S, De Krijger RR, Van Dongen JJ, Staal FJ (2009) Wnt 3a deficiency irreversibly impairs hematopoietic stem cell self renewal and leads to defects in progenitor cell differentiation. Blood 113:546–554

    Article  CAS  Google Scholar 

  • Ma L, Feng XY, Cui BL, Law F, Jiang XW, Yang LY, Xie QD, Huang TH (2005) Human umbilical cord Wharton’s Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chin Med J (Engl) 118:1987–1993

    CAS  Google Scholar 

  • Magnusson M, Brun AC, Miyake N, Larsson J, Ehinger M, Bjornson JM, Wutz A, Sigvardsson M, Karlsson S (2007) HoxA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocytic development. Blood 109:3687–3696

    Article  CAS  Google Scholar 

  • Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F (2001) Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 86:1099–1100

    CAS  Google Scholar 

  • Martin GR (1981) Isolation of pluripotent cell line from early mouse embryos cultures in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7636

    Article  CAS  Google Scholar 

  • Martin G, Roger P (2010) Notch signaling and hematopoietic stem cell formation during embryogenesis. J Cell Physiol 222:11–16

    Article  Google Scholar 

  • Matsuzuka T, Rachakatla RS, Doi C, Maurya DK, Ohta N, Kawabata A, Pyle MM, Pickel L, Reishman F, Troyer D, Tamura M (2010) Human umbilical cord matrix-derived stem cells expressing interferon-β gene significantly attenuate bronchioloalveolar carcinoma xenografts in SCID mice. Lung Cancer 70:28–36

    Google Scholar 

  • Mehrotra M, Rosol M, Ogawa M, Larue AC (2010) Amelioration of a mouse model of osteogenesis imperfecta with hematopoietic stem cell transplantation; micro computed tomography studies. Exp Haematol 38:593–602

    Google Scholar 

  • Micha D, Nissim B (2004) The immunogenicity of human embryonic stem derived cells. Trends Biotechnol 22:136–141

    Article  Google Scholar 

  • Michael H, Lars N, Justin CW (2008) The hematopoietic stem cell niche; what are we trying to replicate. J Chem Technol Biotechnol 83:421–443

    Article  Google Scholar 

  • Morigi M, Rota C, Montemurro T, Montelatici E, Lo Cicero V, Imberti B, Abbate M, Zoja C, Cassis P, Longaretti L, Rebulla P, Introna M, Capelli C, Benigni A, Remuzzi G, Lazzari L (2010) Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute kidney injury. Stem Cells 28:513–522

    CAS  Google Scholar 

  • Nishiyama N, Miyoshi S, Hida N, Uyama T, Okamoto K, Ikegami Y, Miyado K, Segawa K, Terai M, Sakamoto M, Ogawa S, Umezawa A (2007) The significant cardi myogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro. Stem Cells 25:2017–2024

    Article  CAS  Google Scholar 

  • Niwa H (2007) How is pluripotency determined and maintained? Development 134:635–646

    Article  CAS  Google Scholar 

  • Oh W, Kim DS, Yang YS, Lee JK (2008) Immunological properties of umbilical cord blood-derived mesenchymal stromal cells. Cell Immunol 251:116–123

    Article  CAS  Google Scholar 

  • Przyboski SA (2005) Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells 23:1242–1250

    Article  Google Scholar 

  • Rubinstein P, Rosenfield RE, Adamson JW, Stevens CE (1993) Stored placental blood for unrelated bone marrow reconstitution. Blood 81:1679–1690

    CAS  Google Scholar 

  • Sarugaser R, David L, Bakshi D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUPVC) cells; a source of mesenchymal progenitors. Stem Cells 23:220–229

    Article  Google Scholar 

  • Seo KW, Lee SR, Bhandari DR, Roh KH, Park SB, So AY, Jung JW, Seo MS, Kang SK, Lee YS, Kang KS (2009) OCT4A contributes to the stemness and multi-potency of human umbilical cord blood-derived multipotent stem cells. Biochem Biophys Res Commun 384:120–125

    Article  CAS  Google Scholar 

  • Servais S, Baron F, Beguin Y (2011) Allogeneic hematopoietic stem cell transplantation (HSCT) after reduced intensity conditioning. Transfus Apher Sci 44:205–210

    Article  Google Scholar 

  • Seung H, Eunji G, Jeong JA, Chiyoung A, Soo H, Yang IH, Park HK, Han H, Kim H (2005) In vitro differentiation of human umbilical cord blood derived mesenchymal stem cells into hepatocyte-like cells. Biochem Biophys Res Commun 330:1153–1161

    Article  Google Scholar 

  • Sobolewski K, Bankowski E, Chyczewski L, Jaworski S (1997) Collagens and glycosaminoglycans of the Wharton’s jelly. Biol Neonate 71:11–21

    Article  CAS  Google Scholar 

  • Solter D (2006) From teratocarcinomas to embryonic stem cells and beyond; a history of embryonic stem cell research. Nat Rev Genet 7:319–327

    Article  CAS  Google Scholar 

  • Stuart H, Leonard IZ (2008) Haematopoiesis; an evolving paradigm for stem cell biology. Cell 132:631–644

    Article  Google Scholar 

  • Suaudeau J (2011) From embryonic stem cells to iPS - an ethical perspective. Cell Prolif 44:70–84

    Article  Google Scholar 

  • Sun B, Yu KR, Bhandari DR, Jung JW, Kang SK, Kang KS (2010) Human umbilical cord blood mesenchymal stem cell-derived extracellular matrix prohibits metastatic cancer cell MDA-MB-231 proliferation. Cancer Lett 296:178–185

    Article  CAS  Google Scholar 

  • Sykes M, Nikolic B (2005) Treatment of severe autoimmune diseases by stem-cell transplantation. Nature 435:620–627

    Article  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor Shapiro J, Waknitz SS, Swiergiel MA, Marshall JJ, Jones JM (1998) Embryonic stem cells derived from human blastocyst. Science 282:1145–1147

    Article  CAS  Google Scholar 

  • Till JE, Mcculloch EA (1961) A direct measurement of radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    Article  CAS  Google Scholar 

  • Till JE, Mcculloch EA, Siminovitch L (1963) The distribution of colony-forming cells among spleen colonies. J Cell Comp Physiol 62:327–336

    Article  Google Scholar 

  • Tsai SY, Clavel C, Kim S, Ang YS, Grisanti L, Lee DF, Kelley K, Rendl M (2010) Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells 28:221–228

    CAS  Google Scholar 

  • Wagers AJ, Sherwood RI, Christensen JL, Weismann IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259

    Article  CAS  Google Scholar 

  • Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337

    Article  Google Scholar 

  • Wang M, Yang Y, Yang D, Luo F, Liang W, Guo S, Xu J (2009) The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology 126:220–232

    Article  CAS  Google Scholar 

  • Wang Y, Fan H, Zhou B, Ju Z, Yu L, Guo L, Han J, Lu S (2012) Fusion of human umbilical cord mesenchymal stem cells with esophageal carcinoma cells inhibits the tumorigenicity of esophageal carcinoma cells. Int J Oncol 40:370–377

    Google Scholar 

  • Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D (2006) Human umbilical cord matrix stem cells; preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells 24:781–792

    Article  CAS  Google Scholar 

  • Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, Troyer D, McIntosh KR (2008) Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26:2865–2874

    Article  CAS  Google Scholar 

  • Wilmut A, Schnieke E, Mcwhir J, Kind AJ, Campbell KSH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  CAS  Google Scholar 

  • Wilson A, Oser GM, Jaworski M, Blanco-Bose WE, Laurenti E, Adolphe C, Essers MA, Macdonald HR, Trumpp A (2007) Dormant and self renewing hematopoietic stem cells and their niches. Ann N Y Acad Sci 1106:64–75

    Article  CAS  Google Scholar 

  • Wu JY, Scadden DT, Kronenberg HM (2009) Role of osteoblast lineage in the bone marrow hematopoietic niches. J Bone Miner Res 24:759–764

    Article  Google Scholar 

  • Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell 117:663–676

    Article  CAS  Google Scholar 

  • Yan Y, Xu W, Qian H, Si Y, Zhu W, Cao H, Zhou H, Mao F (2009) Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo. Liver Int 29:356

    Article  CAS  Google Scholar 

  • Yuri AR, Veronica AS, Vladmir NS (2003) Searching for alternative sources of post natal human mesenchymal stem cells; candidate msc like cells from the umbilical cord. Stem Cells 21:105–110

    Article  Google Scholar 

  • Zhang YN, Lie PC, Wei X (2009) Differentiation of mesenchymal stromal cells derived from umbilical cord Wharton’s jelly into hepatocyte-like cells. Cytotherapy 11:548–558

    Article  CAS  Google Scholar 

  • Zhang HT, Fan J, Cai YQ, Zhao SJ, Xue S, Lin JH, Jiang XD, Xu RX (2010) Human Wharton’s jelly cells can be induced to differentiate into growth factor-secreting oligodendrocyte progenitor-like cells. Differtiation 79:15–20

    Article  CAS  Google Scholar 

  • Zhao Q, Ren H, Li X, Chen Z, Zhang X, Gong W, Liu Y, Pang T, Han ZC (2009) Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells. Cytotherapy 11:414–426

    Article  CAS  Google Scholar 

  • Zon LI (2008) Intrinsic and extrinsic control of hematopoietic stem cell self renewal. Nature 453:306–313

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (no. 81072741), National Basic Research Program of China (“973 Program”) (2011CB505300-02), Program for Changjiang Scholars and Innovative Research Team in University (no. IRT0973) and Tianjin Research Program Of Application Foundation And Advanced Technology (No.09jcybjc).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duya, P., Bian, Y., Chu, X. et al. Stem cells for reprogramming: could hUMSCs be a better choice?. Cytotechnology 65, 335–345 (2013). https://doi.org/10.1007/s10616-012-9489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-012-9489-3

Keywords

Navigation