Skip to main content
Log in

Anti-inflammatory effect of lysozyme from hen egg white on mouse peritoneal macrophages

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Lysozyme from hen egg has been reported to possess an anti-inflammatory effect. However, little is known about its detailed mechanism. The mechanism of anti-inflammatory effect of lysozyme was examined in this study. When mouse macrophage-like cell line RAW264.7 cells and mouse peritoneal macrophages were activated with lipopolysaccharide (LPS) and then treated with lysozyme, the production of tumor necrosis factor-α and interleukin-6 was significantly suppressed. The effect was induced by suppressing the gene expression levels of both cytokines. Phagocytosis activity of peritoneal macrophages was not altered by the treatment with lysozyme, suggesting that lysozyme shows the anti-inflammatory effect without inhibiting the phagocytotic response of macrophages. In addition, lysozyme inhibited phosphorylation of c-jun N-terminal kinase (JNK) and was taken up by macrophages within 1 h after treatment of the cells with lysozyme. Overall results suggest that lysozyme is taken up intracellularly and suppresses LPS-induced inflammatory responses by inhibiting JNK phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Carrillo W, García-Ruiz A, Recio I, Moreno-Arribas MV (2014) Antibacterial activity of hen egg white lysozyme modified by heat and enzymatic treatments against oenological lactic acid bacteria and acetic acid bacteria. J Food Prot 77:1732–1739

    Article  CAS  PubMed  Google Scholar 

  • Carrillo W, Spindola H, Ramos M, Recio I, Carvalho JE (2016) Anti-inflammatory and anti-nociceptive activities of native and modified hen egg white lysozyme. J Med Food 19:978–982

    Article  CAS  Google Scholar 

  • Chung J, Ku SK, Lee S, Bae JS (2016) Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses. Biochem Biophys Res Commun 474:715–721

    Article  CAS  PubMed  Google Scholar 

  • Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339:286–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141:2407–2412

    CAS  PubMed  Google Scholar 

  • Han SM, Jung YD, Morel C, Lakhani AS, Kim KJ, Flavell AR, Davis JR (2013) JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 339:218–222

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HR, Hamasaki K, Miyata T (2017) Novel peptide motifs from lysozyme suppress pro-inflammatory cytokines in macrophages by antagonizing toll-like receptor and LPS-scavenging action. Eur J Pham Sci 107:240–248

    Article  CAS  Google Scholar 

  • Jollès P, Jollès J (1984) What’s new in lysozyme research? Always a model system, today as yesterday. Mol Cell Biochem 63:165–189

    Article  PubMed  Google Scholar 

  • Kanda K, Nishi K, Kadota A, Nishimoto S, Liu MC, Sugahara T (2012) Nobiletin suppresses adipocyte differentiation of 3T3-L1 cells by an insulin and IBMX mixture induction. Biochim Biophys Acta 1820:461–468

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Takeuchi O, Fujita T, Inoue J, Mühlradt PF, Sato S, Hoshino K, Akira S (2001) Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 167:5887–5894

    Article  CAS  PubMed  Google Scholar 

  • Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, Kollias G (1991) Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 10:4025–4031

    Article  CAS  Google Scholar 

  • Kyriakis MJ, Avruch J (1996) Protein kinase cascades activated by stress and inflammatory cytokines. BioEssays 18:567–577

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Kovacs-Nolan J, Yang C, Archbold T, Fan MZ, Mine Y (2009) Hen egg lysozyme attenuates inflammation and modulates local gene expression in a porcine model of dextran sodium sulfate (DSS)-induced colitis. J Agric Food Chem 57:2233–2240

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Ku SK, Na DH, Bae JS (2015) Anti-inflammatory effects of lysozyme against HMGB1 in human endothelial cells and in mice. Inflammation 38:1911–1924

    Article  CAS  PubMed  Google Scholar 

  • Manabe I (2011) Chronic inflammation links cardiovascular, metabolic and renal diseases. Circ J 75:2739–2748

    Article  CAS  PubMed  Google Scholar 

  • Murakami F, Sasaki T, Sugahara T (1997) Lysozyme stimulates immunoglobulin production by human-human hybridoma and human peripheral blood lymphocytes. Cytotechnology 24:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishi K, Kondo A, Okamoto T, Nakano H, Daifuku M, Nishimoto S, Ochi K, Takaoka T, Sugahara T (2011) Immunostimulatory in vitro and in vivo effects of a water-soluble extract from kale. Biosci Biotechnol Biochem 75:40–46

    Article  CAS  PubMed  Google Scholar 

  • Ogundele MO (1998) A novel anti-inflammatory activity of lysozyme: modulation of serum complement activation. Mediators Inflamm 7:363–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohbayashi H, Setoguchi Y, Fukuchi Y, Shibata K, Sakata Y, Arai T (2016) Pharmacological effects of lysozyme on COPD and bronchial asthma with sputum: a randomized, placebo-controlled, small cohort, cross-over study. Pulm Pharmacol Ther 37:73–80

    Article  CAS  PubMed  Google Scholar 

  • Putra ABN, Morishige H, Nishimoto S, Nishi K, Shiraishi R, Doi M, Sugahara T (2012) Effect of collagens from jellyfish and bovine Achilles tendon on the activity of J774.1 and mouse peritoneal macrophage cells. J Funct Foods 4:504–512

    Article  CAS  Google Scholar 

  • Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6:1087–1095

    Article  CAS  PubMed  Google Scholar 

  • Schindler H, Lutz MB, Röllinghoff M, Bogdan C (2001) The production of IFN-gamma by IL-12/IL-18-activated macrophages requires STAT4 signaling and is inhibited by IL-4. J Immunol 166:3075–3082

    Article  CAS  PubMed  Google Scholar 

  • Sugahara T, Murakami F, Yamada Y, Sasaki T (2000) The mode of actions of lysozyme as an immunoglobulin production stimulating factor. Biochim Biophys Acta 1475:27–34

    Article  CAS  PubMed  Google Scholar 

  • Sugahara T, Yamada Y, Yano S, Sasaki T (2002) Heat denaturation enhanced immunoglobulin production stimulating activity of lysozyme from hen egg white. Biochim Biophys Acta 1572:19–24

    Article  CAS  PubMed  Google Scholar 

  • Takada K, Ohno N, Yadomae T (1994) Detoxification of lipopolysaccharide (LPS) by egg white lysozyme. FEMS Immunol Med Microbiol 9:255–263

    Article  CAS  PubMed  Google Scholar 

  • Vodovotz Y, Bogdan C, Paik J, Xie QW, Nathan C (1993) Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor β. J Exp Med 178:605–613

    Article  CAS  PubMed  Google Scholar 

  • Wellen KE, Hotamisligil GS (2003) Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 112:1785–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S (2003) TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4:1144–1150

    Article  CAS  PubMed  Google Scholar 

  • Yokooji T, Hamura K, Matsuo H (2013) Intestinal absorption of lysozyme, an egg-white allergen, in rats: kinetics and effect of NSAIDs. Biochem Biophys Res Commun 438:61–65

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a JSPS KAKENHI Grant-in-Aid for Scientific Research C (15K07432). Animal experiments were accomplished at the Division of Genetic Research of the Advanced Research Support Center (ADRES), Ehime University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Sugahara.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagashira, A., Nishi, K., Matsumoto, S. et al. Anti-inflammatory effect of lysozyme from hen egg white on mouse peritoneal macrophages. Cytotechnology 70, 929–938 (2018). https://doi.org/10.1007/s10616-017-0184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-017-0184-2

Keywords

Navigation