Skip to main content
Log in

The cereal phytopathogen Sporisorium reilianum is able to infect the non-natural host Arabidopsis thaliana

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

We analyzed the infection of the model plant Arabidopsis thaliana by the basidiomycete phytopathogen of cereals Sporisorium reilianum in order to use it as an experimental pathosystem model. Sterile plantlets of A. thaliana were grown on MS solid medium, and inoculated with haploid strains or mixtures of sexually compatible S. reilianum strains. Inoculated plants showed growth of filaments within their tissues, size reduction, a drastic increase in the formation of lateral roots, and a high production of plant pigments. Although symptoms were more severe in plants infected with sexually compatible strains, no spores were formed by the fungus. Among the pigments accumulated in the stunted plants we identified the anthocyanins cyanidin, cyanidin 3-glucoside, malvidin and pelargonidin. Congruently, the anthocyanin biosynthesis genes: chalcone synthase (CHS, AT5G13930) and dihydroflavonol reductase (DFR, AT5G42800) were over-expressed. The three genes encoding flavin monooxygenases: YUCCA7 (YUC7, AT2G33230), YUCCA8 (YUC8, AT4G28720), and YUCCA9 (YUC9, AT1G04180), and the transcription factor Jagged Lateral Organs (JLO, AT4G00220), all of them involved in the biosynthesis of auxins specific for root development, were also positively regulated. These data provide evidence that both haploid and the mixture of sexually compatible strains of S. reilianum can infect plants of A. thaliana; evidencing the usefulness of this pathosystem for the study of the genetic and metabolic reactions involved in S. reilianum virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Aal, E. S. M., & Hucl, P. (1999). A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chemistry, 76, 350–354.

    Article  CAS  Google Scholar 

  • Banuett, F. (1995). Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annual Review of Genetics, 29, 179–208.

    Article  CAS  PubMed  Google Scholar 

  • Banuett, F., & Herskowitz, I. (1989). Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proceedings of the National Academy of Sciences of the United States of America, 86, 5878–5882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belhaj, K., Cano, L. M., Prince, D. C., Kemen, A., Yoshida, K., Dagdas, Y. F., Etherington, G. J., Schoonbeek, H. J., van Esse, H. P., Jones, J. D. G., Kamoun, S., & Schornack, S. (2017). Arabidopsis late blight: infection of a nonhost plant by Albugo laibachii enables full colonizationby Phytophthora infestans. Cellular Microbiology, 19, e12628. https://doi.org/10.1111/cmi.12628.

    Article  CAS  Google Scholar 

  • Bhaskaran, S., & Smith, R. H. (1993). Carbohydrates, inertase activity, growth and dimorphism in Sporisorium reilianum. Mycopathologia, 122, 35–41.

    Article  CAS  Google Scholar 

  • Cai, X. T., Xu, P., Zhao, P. X., Liu, R., Yu, L. H., & Xiang, C. B. (2014). Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nature Communications, 5, 5833. https://doi.org/10.1038/ncomms6833.

    Article  CAS  PubMed  Google Scholar 

  • Davis, K. R. (1993). Arabidopsis thaliana as a model for plant-pathogen interactions. In R. Hammershmidt (Ed.), The American phytopathological society (pp. 1–134). APS Press: St. Paul.

    Google Scholar 

  • Doehlemann G., Ökmen B., Zhu W., & Sharon A. (2017). Plant pathogenic fungi. Microbiology Spectrum, 5. https://doi.org/10.1128/microbiolspec.FUNK-0023-2016.

  • Garzón, G. A. (2008). Anthocyanins as natural colorants and bioactive compounds. A review. Acta Biológica Colombiana, 13, 27–36.

    Google Scholar 

  • Hoch, H. C., Galvani, C. D., Szarowski, D. H., & Turner, J. N. (2005). Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia, 97, 580–588.

    Article  CAS  PubMed  Google Scholar 

  • Holliday, R. (1974). Ustilago maydis. In R. C. King (Ed.), The handbook of genetics (pp. 575–595). New York: Plenum Press.

    Google Scholar 

  • Ibraheem, F., Gaffoo, I., Tan, Q., Shyu, C. R., & Chopra, S. (2015). A sorghum MYB transcription factor induces 3-deoxyanthocyanidins and enhances resistance against leaf blights in maize. Molecules, 20, 2388–2404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61, 1361779.

    Article  CAS  Google Scholar 

  • Koes, R., Verweij, W., & Quattrocchio, F. (2005). Flavonoids: a colorful model for the regulation and evolution of biotechemical pathways. Trends in Plant Science, 10, 236–242.

    Article  CAS  PubMed  Google Scholar 

  • Kondo, S., Hiraoka, K., Kobayashi, S., Honda, C., & Terahara, N. (2002). Changes in the expression of anthocyanin biosynthetic genes during apple development. Journal of the American Society for Horticultural Science, 127, 971–976.

    Article  CAS  Google Scholar 

  • Kontoyiannis, D. P., & Lewis, R. E. (2010). Studying fungal pathogenesis in Drosophila. Microbe, 5, 291–295.

    Google Scholar 

  • Li, N., Wu, H., Ding, Q., Li, H., Li, Z., Ding, J., & Li, Y. (2018). The heterologous expression of Arabidopsis PAP2 induces anthocyanin accumulation and inhibits plant growth in tomato. Functional & Integrative Genomics, 18, 341–353. https://doi.org/10.1007/s10142-018-0590-3.

    Article  CAS  Google Scholar 

  • Martin, F., Delareulle, C., & Hilbert, J. L. (1990). An improved ergosterol assay to estimate fungal biomass in ectomycorrhizas. Mycological Research, 94, 1059–1064.

    Article  Google Scholar 

  • Martinez, C., Roux, C., Jauneau, A., & Dargent, R. (2002). The biological cycle of Sporisorium reilianum f. sp. zeae: an overview using microscopy. Mycologia, 94, 505–514.

    Article  PubMed  Google Scholar 

  • Martínez-Soto, D., Robledo-Briones, A. M., Estrada-Luna, A. A., & Ruiz-Herrera, J. (2013). Transcriptomic analysis of Ustilago maydis infecting Arabidopsis reveals important aspects of the fungus pathogenic mechanisms. Plant Signaling & Behavior. https://doi.org/10.4161/psb.25059.

  • Martínez-Soto, D., Pérez-Garcia, F. E., & Ruiz-Herrera, J. (2016). Arabidopsis infection by haploid or diploid strains of Ustilago maydis reveals its capacity as a necrophic or biotrophic phytopathogen. Fungal Genomics and Biology. https://doi.org/10.4172/2165-8056.1000133.

  • Mazaheri-Naeini, M., Sabbagh, S. K., Martinez, Y., Séjalon-Delmas, N., & Roux, C. (2015). Assessment of Ustilago maydis as a fungal model for root infection studies. Fungal Biology, 119, 145–153.

    Article  PubMed  Google Scholar 

  • Méndez-Morán, L., Reynaga-Peña, C. G., Springer, P. S., & Ruiz-Herrera, J. (2005). Ustilago maydis infection of the nonnatural host Arabidopsis thaliana. Phytopathology, 95, 480–488.

    Article  PubMed  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  • Olatunji, D., Geelen, D., & Verstraeten, I. (2017). Control of endogenous auxin levels in plant root development. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms18122587.

  • Palomeros-Suárez, P. A., Massange-Sánchez, J. A., Sánchez-Segura, L., et al. (2017). AhDGR2, an amaranth abiotic stress-induced DUF642 protein gene, modifies cell wall structure and composition and causes salt and ABA hyper-sensibility in transgenic Arabidopsis. Planta, 245, 623–640.

    Article  CAS  Google Scholar 

  • Perfect, J. R., Savani, D. V., & Durack, D. T. (1986). Comparison of itraconazole and fluconazole in treatment of cryptococcal meningitis and candida pyelonephritis in rabbits. Antimicrobial Agents and Chemotherapy, 29, 579–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poloni, A., & Schirawski, J. (2016). Host specificity in Sporisorium reilianum is determined by distinct mechanisms in maize and sorghum. Molecular Plant Pathology, 17, 741–754.

    Article  CAS  PubMed  Google Scholar 

  • Rast-Somssich, M. I., Zádníkova, P., Schmid, S., Kieffer, M., Kepinski, S., & Simon, R. (2017). The Arabidopsis Jagged Lateral Organs (JLO) gene sensitizes plants to auxin. Journal of Experimental Botany, 68, 2741–2755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirawski, J., Heinze, B., Wagenknecht, M., & Kahmann, R. (2005). Mating type loci of Sporisorium reilianum: novel pattern with three a and multiple b specificities. Eukaryotic Cell, 4, 1317–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirawski, J., Mannhaupt, G., Münch, K., et al. (2010). Pathogenicity determinants in smut fungi revealed by genome comparison. Science, 330, 1546–1548.

    Article  CAS  PubMed  Google Scholar 

  • van der Does, H. C., & Rep, M. (2017). Adaptation to the host environment by plant-pathogenic fungi. Annual Review of Phytopathology, 55, 427–450.

    Article  CAS  PubMed  Google Scholar 

  • Warpeha, K. M., Park, Y. D., & Williamson, P. R. (2013). Susceptibility of intact germinating Arabidopsis thaliana to human fungal pathogens Cryptococcus neoformans and C. gattii. Applied and Environmental Microbiology, 79, 2979–2988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigel, D., & Glazebrook, J. (2002). Arabidopsis: A laboratory manual. New Yok: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Zhao, Y. (2012). Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Molecular Plant, 5, 334–338.

    Article  CAS  PubMed  Google Scholar 

  • Zuther, K., Kahnt, J., Utermark, J., Imkampe, J., Uhse, S., & Schirawski, J. (2012). Host specificity of Sporisorium reilianum is tightly linked to generation of the phytoalexin luteolinidin by Sorghum bicolor. Molecular Plant-Microbe Interactions, 25, 1230–1237.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Consejo Nacional de Ciencia y Tecnología (Conacyt), México. Thanks are given to Prof. Jan Schirawski, Institute of Applied Microbiology, RWTH Aachen University, Germany, for making available the S. reilianum strains SRZ2 and SRZ1. We also thank Mayela F. Salazar-Chávez from the Irapuato Unit of Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Leandro A. Núñez-Muñoz and Brenda J. Vargas-Hernández from Zacatenco Unit of Cinvestav; Renata Cruz-Calderon from Instituto Tecnológico Superior de Los Reyes, TSLR; and Drs. José I. Reyes-Olalde, and Stefan de Folter from the Unit of Advance Genomics, Cinvestav, for their assistance respectively in strain maintenance, preparation of some reagents, statistical analyses, and microscopic analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Domingo Martínez-Soto or José Ruiz-Herrera.

Ethics declarations

The authors declare that they are aware of the ethical responsibilities required by the European Journal of Plant Pathology for the submission of manuscripts. Also, they declare no conflict of interests and that they were informed of the submission of the manuscript.

Electronic supplementary material

ESM 1

(PDF 308 kb)

ESM 2

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Soto, D., Velez-Haro, J.M., León-Ramírez, C.G. et al. The cereal phytopathogen Sporisorium reilianum is able to infect the non-natural host Arabidopsis thaliana. Eur J Plant Pathol 153, 417–427 (2019). https://doi.org/10.1007/s10658-018-1567-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1567-8

Keywords

Navigation