Skip to main content
Log in

Wholesale replacement of lima bean (Phaseolus lunatus L.) landraces over the last 30 years in northeastern Campeche, Mexico

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Genetic erosion has been evaluated at the landrace level in the past, principally because the loss of landraces is believed to generate erosion at the allelic level; however, few studies had tested this hypothesis in the crop’s centers of diversity and domestication. Using microsatellite markers, we analyzed for genetic erosion in lima bean (Phaseolus lunatus) landraces over time in samples collected in 1979 and in 2007 in northeast Campeche, in the Yucatan peninsula, Mexico, an important diversity center and part of the putative domestication area for this crop. We found that the lima bean genetic pool from 1979 had a higher genetic diversity than the one for the 2007 pool (Nei’s diversity, H = 0.18 and 0.05, respectively). Although this result could not to be explained using a bottleneck analysis, a cluster analysis showed that the alleles present in 1979 were not the same as those found in 2007, indicating an allelic displacement in the genetic pool of the lima bean landraces in the last 30 years. This displacement could be due to the introduction of improved varieties or landraces, resulting in a displacement of local varieties or to changes in the Mayan criteria for selection of germplasm or both. This study showed that the loss of landraces can generate both quantitative and qualitative changes in the genetic pool of the domesticated species. Such changes are very important to consider when planning ex situ and in situ programs to conserve crop diversity in their domestication areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams REW, Culbert TP (1977) The origins of civilization in the Maya lowlands. In: Adams REW (ed) The origins of Maya civilization. University of New Mexico, Albuquerque, pp 3–34

    Google Scholar 

  • Almanza-Pinzón MI, Khairallah M, Fox PN, Warburton ML (2003) Comparison of molecular markers and coefficients of parentage for the analysis of genetic diversity among spring bread wheat accessions. Euphytica 130:77–86

    Article  Google Scholar 

  • Altieri MA, Montecinos C (1993) Conserving crop genetic resources in Latin America through farmer’s participation. In: Christopher S, Potter DJ, Cohen JI (eds) Perspectives on biodiversity: case studies of genetic resource conservation and development. American Association for the Advancement of Science, Washington, pp 45–64

    Google Scholar 

  • Arias LM, Latournerie L, Montiel S, Sauri E (2007) Cambios recientes en la diversidad de maíces criollos de Yucatán, México. Universidad y Ciencia 1(23):69–74

  • Backes G, Hatz B, Jahoor A, Fischbeck G (2003) RFLP diversity within and between major groups of barley in Europe. Plant Breed 122:291–299

    Article  CAS  Google Scholar 

  • Ballesteros GA (1999) Contribuciones al conocimiento del frijol Lima (Phaseolus lunatus L.) en América Tropical. Ph. D. thesis, Colegio de Posgraduados, Montecillos, Estado de México, México

  • Barry MB, Pham JR, Beavogui S, Ghesquiere A, Ahmadi N (2008) Diachronic (1979–2003) analysis of rice genetic diversity in Guinea did not reveal genetic erosion. Genet Resour Crop Evol 55:723–733

    Article  Google Scholar 

  • Bassam BJ, Anollés GC, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Baudoin JP, Degreef J, Hardy O, Janart F, Zoro Bi I (1998) Development of an in situ conservation strategy for wild Lima bean (Phaseolus lunatus L.) populations in the central valley of Costa Rica. In: Owens SJ, Rudall PJ (eds) Reproduction biology. Royal Botanic Garden Press, Kew, pp 417–426

    Google Scholar 

  • Baur E (1914) Die Bedeutung der primitiven Kulturrassen und der wilden Verwandten unserer Kulturpflanzen für die pflanzenzüchtung. Jahrbuch der Deutschen Landwirtschafts Gesellschaft 29:104–110

    Google Scholar 

  • Bellon MR, Taylor JE (1993) Farmer soil taxonomy and technology adoption. Econ Dev Cult Change 41:764–786.

    Google Scholar 

  • SB (1991) A farmer-based approach to conservation crop germplasm. Econ Bot 45:153–165

    Google Scholar 

  • Colunga-GarcíaMarín P, Zizumbo-Villarreal D (2007) Tequila and other Agave spirits from west-central Mexico. Current germplasm diversity, conservation and origin. Biodivers Conserv 16(16):1653–1667

    Article  Google Scholar 

  • de la Cuanalo HEC, Arias LM (1997) Cultural and economic factors that affect farmers decision-making in Yucatan, Mexico. In: Jarvis DI, Hodgkin T (eds) Strengthening the scientific basis of in situ conservation of agricultural biodiversity on-farm. Options for data collecting and analysis. IPGRI, Rome, p 14

    Google Scholar 

  • Debouck DG (1979) Proyecto de recolección de germoplasma de Phaseolus en México. CIAT-INIA, Centro Internacional de Agricultura Tropical (CIAT), Colombia

    Google Scholar 

  • Donini P, Law LR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100:912–917

    Article  Google Scholar 

  • Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distance among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • FAO (1996) ‘The State of the World’s Plant Genetic Resources: Diversity and Erosion’. Third World Resurgence. Farmers’ Rights and the Battle for Agrobiodiversity. Issue No. 72/73 KDN PP6738/1/96. An excerpt from the Report on the State of the World’s Plant Genetic Resources prepared by the FAO Secretariat for the International Technical Conference on Plant Genetic Resources at Leipzig, Germany, 17–23 June 1996

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Frankel OH, Bennett E (1970) Genetic resources in plants-their exploration and conservation. IBP Handbook No. 11. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Gaitán-Solís E, Duque MC, Edwards KJ, Tohme J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris): isolation, characterization, and cross-species amplification in Phaseolus ssp. Crop Sci 42:2128–2136

    Article  Google Scholar 

  • Gao L (2003) The conservation of Chinese rice biodiversity: genetic erosion, ethnobotany and prospects. Genetic Resour Crop Evol 50:17–32

    Article  CAS  Google Scholar 

  • Gómez-Campo C (2006) Erosion of genetic resources within seed banks: the role of seed containers. Seed Sci Res 16:291–294

    Article  Google Scholar 

  • Guerrant EO (1992) Genetic and demographic considerations in the sampling and reintroduction of rare plants. In: Fiedler PL, Jain SK (eds) Conservation biology: the theory and practice of nature conservation, preservation, and management. Routledge, Champan and Hall, Inc., New York (NY), pp 321–344

    Google Scholar 

  • Gutiérrez-Salgado A, Gepts P, Debouck DG (1995) Evidence for two gene pools of the Lima beans (Phaseolus lunatus L.) in the Americas. Genet Resour Crop Evol 42:15–28

    Google Scholar 

  • Hammer K, Laghetti G (2005) Genetic erosion—examples from Italy. Genet Resour Crop Evol 52:629–634

    Article  Google Scholar 

  • Harlan JR (1965) The possible role of weedy races in the evolution of cultivated plants. Euphytica 14:173–176

    Article  Google Scholar 

  • Harlan JR, de Wit JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Haugen JM (2001) Whatever the will the weather: a study of seed systems in Honduras, and their importante for food security ans argobiodiversity in the aftermaths of hurricane Micth. Thesis Agric. Degree, Agricultural University of Norway

  • Hernández FC, Delgado A (1992) Recursos genéticos de frijoles en el oriente de Yucatán. In: Zizumbo D, Rasmussen C, Arias LM, Terán S (eds) La modernización de la milpa en Yucatán: utopía o realidad. CICY-DANIDA, Mérida, pp 147–160

    Google Scholar 

  • Hernández-Xolocotzi E (1992) Racionalidad tecnológica del sistema de producción agíıcola de roza-tumba-quema en Yucatán. In: Zizumbo-Villarreal D, Ramussen C, Arias-Reyes LM, Terán S (eds) La modernización de la milpa en Yucatán: utopía o realidad. CICY-DANIDA, Mérida, pp 187–194

  • Jarvis DI, Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems. Mol Ecol 8:S159–S173

    Article  Google Scholar 

  • Jarvis DI, Myer L, Klemick H, Guarino H, Smale M, Brown AHD (2000) A training guide for in situ conservation on-farm. Version 1. International Plant Genetic Resources Institute, Rome

  • Khlestkina EK, Huang XQ, Quenum FJB, Chebotar S, Röder MS, Börner A (2004) Genetic diversity in cultivated plants—loss or stability? Theor Appl Genet 108:1466–1472

    Article  PubMed  CAS  Google Scholar 

  • Koebner RMD, Donini P, Reeves JC (2003) Temporal flux in the morphological and molecular diversity of UK barley. Theor Appl Genet 106:550–558

    PubMed  CAS  Google Scholar 

  • Ku-Naal R (1995) Cambios técnicos en la milpa bajo roza-tumba-quema en Yaxcabá, Yucatán. In: Hernández XE, Bello BE, Levy TS (eds) La milpa en Yucatán: Un sistema de producción agrícola tradicional. Colegio de Postgraduados, México, pp 401–418

    Google Scholar 

  • Le Clerc V, Bazante F, Baril C, Guiard J, Zhang D (2005) Assessing temporal change in genetic diversity of maize varieties using microsatellite markers. Theor Appl Genet 110:294–302

    Article  PubMed  Google Scholar 

  • Lu H, Bernardo R (2001) Molecular marker diversity among current and historical maize inbreds. Theor Appl Genet 103:613–617

    Article  CAS  Google Scholar 

  • Luikart G, Cornuet JM (1997) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Google Scholar 

  • Luikart GL, Allendrof FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  PubMed  CAS  Google Scholar 

  • Maccaferi M, Sanguinetti MC, Donini P, Tuberosa R (2003) Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet 107:783–797

    Article  Google Scholar 

  • Mantegazza R, Biloni M, Grassi F, Basso B, Lu BR, Cai XX, Sala F, Spada A (2008) Temporal trends of variation in Italian rice germplasm over the past two centuries revealed by AFLP and SSR markers. Crop Sci 48:1832–1840

    Article  CAS  Google Scholar 

  • Maras M, Susnik S, Sustar-Vozlic J, Meglic V (2006) Temporal changes in genetic diversity of common bean (Phaseolus vulgaris L.) accessions cultivated between 1800 and 2000. Russ J Genet 42(7):775–782

    Article  CAS  Google Scholar 

  • Martínez-Castillo J, Zizumbo-Villarreal D, Perales-Rivera H, Colunga-GarcíaMarín P (2004) Intraspecific diversity and morpho-phenological variation in Phaseolus lunatus L. from the Yucatan Peninsula, México. Econ Bot 58(3):354–380

    Article  Google Scholar 

  • Martínez-Castillo J, Zizumbo-Villarreal D, Gepts P, Delgado-Valerio P, Colunga-GarcíaMarín P (2006) Structure and genetic diversity of wild populations of Lima Bean (Phaseolus lunatus L.) from the Yucatan Peninsula, Mexico. Crop Sci 46:1071–1080

    Article  Google Scholar 

  • Martínez-Castillo J, Zizumbo-Villarreal D, Gepts P, Colunga-GarcíaMarín P (2007) Gene flow and genetic structure in the wild-weedy-domesticated complex of Lima bean (Phaseolus lunatus L.) in its Mesoamerican center of domestication and diversity. Crop Sci 47:58–66

    Article  Google Scholar 

  • Martínez-Castillo J, Colunga-GarcíaMarín P, Zizumbo-Villarreal D (2008) Genetic erosion and in situ conservation of Lima bean (Phaseolus lunatus L.) landraces in its Mesoamerican diversity center. Genet Resour Crop Evol 55:1065–1077

    Article  Google Scholar 

  • Miller MP (1997) Tools for population genetic analysis (TFPGA) 1. 3: a windows program for the analysis of allozyme and molecular population genetic data. Distributed by the author

  • Motta-Aldana JR, Serrano-Serrano M, Hernandez-Torres J, Castillo-Villamizar G, Debuck DG, Chacon MI (2010) Multiple origins of lima bean landraces in the Americas: evidence from chloroplast and nuclear DNA polymorphisms. Crop Sci 50(5):1773

    Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106(949):283–292

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Parzies HK, Spoor W, Ennos RA (2000) Genetic diversity of barley landraces accessions (Hordeum vulgaris ssp. vulgare) conserved for different lengths of time in ex situ gene banks. Heredity 84:476–486

    Article  PubMed  CAS  Google Scholar 

  • Petersen L, Ostergard H, Giese H (1994) Genetic diversity among wild and cultivated barley as revealed by RFLP. Theor Appl Genet 89:676–681

    Article  CAS  Google Scholar 

  • Quirós CF, Ortega R, Van Raamsdonk LWD (1992) Amplification of potato genetic resources in their center of diversity: the role of natural outcrossing and selection by the Andean farmer. Genet Resour Crop Evol 39:107–113

    Google Scholar 

  • Reyes GD, Aguilar G (1992) Intensificación de la milpa en Yucatá. In: Zizumbo-Villarreal D, Ramussen C, Arias-Reyes LM, Terán S (eds) La modernización de la milpa en Yucatán: utopía o realidad. CICY-DANIDA, Mérida, México, pp 347–358

  • Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920–930

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Serrano-Serrano ML, Hernández-Torres J, Castillo-Villamizar G, Debouck DG, Chacón MI (2010) Gene pools in wild lima bean (Phaseolus lunatus L.) from the Americas: evidences for an Andean origin and past migrations. Mol Phylogenet Evol 54:76–87

    Google Scholar 

  • Sherwin WB, Moritz C (2000) Managing and monitoring genetic erosion. In: Young AG, Clarke GM (eds) Genetics, demography and viability of fragment populations, vol 4. Cambridge Univ Press, Cambridge, pp 9–34

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  PubMed  CAS  Google Scholar 

  • Stebbins GL (1959) The role of hybridization in evolution. Proc Am Phil Soc 103:231–251

    Google Scholar 

  • Struss D, Plieske J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet 97:308–315

    Article  CAS  Google Scholar 

  • Tsegaye B, Berg T (2006) Genetic erosion of Ethiopian tetra-ploid wheat landraces in Eastern Shewa, Central Ethiopia. Genet Resour Crop Evol 54(4):715–726

    Google Scholar 

  • Upadhyay MP, Sthapit BR (1998) Plant genetic resource conservation programs in Nepal: some proposals for scientific basis of in situ conservation of agrobiodiversity. In: Paper presented on the strengthening the scientific basis of in situ conservation of crop gene pools, from 17–19 July in Rome, Italy, IPGRI

  • van de Wouw M, Kik C, van Hintum T, van Treuren R, Visser B (2010) Genetic erosion in crops: concept, research results and challenges. Plant Genet Resour 8:1–15

    Google Scholar 

  • Vargas-Ponce O, Zizumbo-Villarreal D, Colunga-GarcíaMarín P (2007) In situ diversity and maintenance of traditional Agave landraces used in spirits production in west-central, Mexico. Econ Bot 61(4):362–375

    Article  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, vol IV. Variability within and among natural populations. University of Chicago Press, Chicago

  • Xiu-Qiang H, Wolf M, Ganal MW, Orford S, Koebner RMD, Röder MS (2007) Did modern plant breeding lead to genetic erosion in European winter wheat varieties? Crop Sci 47:343–349

    Article  Google Scholar 

  • Yeh FC, Boyle TJB (1999) Popgene version 1.31. Microsoft Windows-based freeware for population analysis. University of Alberta and Centre for International Forestry Research, Edmonton

    Google Scholar 

  • Zizumbo-Villarreal D (1992) Conclusiones Mesa Redonda La modernización de la milpa en Yucatán: utopía o realidad. In: Zizumbo-Villareal D, Ramussen C, Arias-Reyes LM, Terán S (eds) La modernización de la milpa en Yucatán: utopía o realidad. CICY-DANIDA, Mérida, Yucatán, México, pp 371–378

Download references

Acknowledgments

This research was done in the Molecular Markers Laboratory of the Department of Natural Resources-CICY. The authors thank Dr. Daniel Debouck (CIAT-Colombia) for his important comments on this article, Filogonio May-Pat and Felix Dzul Tejero for assistance with fieldwork, and Ciencia Básica (CONACyT-México) and Red Frijol (SINAREFI-SAGARPA) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Martínez-Castillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Castillo, J., Camacho-Pérez, L., Coello-Coello, J. et al. Wholesale replacement of lima bean (Phaseolus lunatus L.) landraces over the last 30 years in northeastern Campeche, Mexico. Genet Resour Crop Evol 59, 191–204 (2012). https://doi.org/10.1007/s10722-011-9675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-011-9675-8

Keywords

Navigation