Skip to main content
Log in

Genetic diversity and population structure analysis of wild Malus genotypes including the crabapples (M. baccata (L.) Borkh. & M. sikkimensis (Wenzig) Koehne ex C. Schneider) collected from the Indian Himalayan region using microsatellite markers

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The inadequate information on genetic diversity and population structure of wild Malus genotypes including indigenous Himalayan crabapples [M. baccata (L.) Borkh. and M. sikkimensis (Wenzig) Koehne ex C. Schneider] collected and maintained at different field gene banks of apple necessitated this study. A set of 31 SSR loci covering all the linkage groups of apple genome was successfully used in this study. The average number of alleles at per locus, major allelic frequency, expected heterozygosity, observed heterozygosity and PIC values were 3.29, 0.592, 0.506, 0.271 and 0.438, respectively among the studied SSR loci. The set of SSR loci yielded 8 unique and 11 rare alleles among the wild Malus genotypes. These wild Malus genotypes were grouped into seven distinct clades, where the indigenous Himalayan M. baccata (L.) Borkh. ecotypes were grouped in separate clades confirming them to be genetically distinct. Furthermore, model based population structure differentiated the wild apple genotypes into three populations of which one was indigenous Himalayan M. baccata (L.) Borkh. ecotypes. The high allele-frequency divergence among populations revealed high genetic differences between them. The AMOVA revealed high genetic diversity between populations of wild Malus genotypes; and within; and among the individuals of the populations. The PCoA validated and reconfirmed the three groups of the population as differentiated by model based population structure. The genetic uniqueness of indigenous Himalayan M. baccata (L.) Borkh. ecotypes can further add the new genes in the global gene pool of apple. This study could serve as base information for future exploration and collection of more accessions of indigenous Himalayan crabapples from the region extending to about 7000 km in the Indian Himalayan region. The existing high degree of genetic diversity among the studied wild apple genotypes could be the valuable genetic resource for the apple improvement programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anonymous (1962) The wealth of India: raw materials. CSIR, New Delhi VI, pp 234–249

  • Belaj A, Muñoz-Diez C, Baldoni L, Porceddu A, Barranco D, Satovic Z (2007) Genetic diversity and population structure of wild olives from the north-western Mediterranean assessed by SSR markers. Ann Bot 100(3):449–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coart E, Vekemans X, Smulders MJ, Wagner I, Van Huylenbroeck J, Van Bockstaele E, Roldán-Ruiz I (2003) Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers. Mol Ecol 12(4):845–857

    Article  CAS  PubMed  Google Scholar 

  • Cornille A, Gladieux P, Smulders MJ, Roldan-Ruiz I, Laurens F, Le Cam B, Nersesyan A, Clavel J, Olonova M, Feugey L, Gabrielyan I (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8(5):e1002703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornille A, Giraud T, Smulders MJ, Roldán-Ruiz I, Gladieux P (2014) The domestication and evolutionary ecology of apples. Trends Genet 30(2):57–65

    Article  CAS  PubMed  Google Scholar 

  • Cornille A, Feurtey A, Gélin U, Ropars J, Misvanderbrugge K, Gladieux P, Giraud T (2015) Anthropogenic and natural drivers of gene flow in a temperate wild fruit tree: a basis for conservation and breeding programs in apples. Evol Appl 8(4):373–384

    Article  PubMed  PubMed Central  Google Scholar 

  • Crouch JH, Crouch HK, Constandt H, Van Gysel A, Breyne P, Van Montagu M, Jarret RL, Ortiz R (1999) Comparison of PCR-based molecular marker analyses of Musa breeding populations. Mol Breed 5(3):233–244

    Article  CAS  Google Scholar 

  • Dhillon BS, Rana JC (2004) Temperate fruits genetic resources management in India-issues and strategies. In: 7th International symposium on temperate zone fruits in the tropics and subtropics 662:139–146

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Ferreira V, Ramos-Cabrer AM, Carnide V, Pinto-Carnide O, Assunção A, Marreiros A, Rodrigues R, Pereira-Lorenzo S, Castro I (2016) Genetic pool structure of local apple cultivars from Portugal assessed by microsatellites. Tree Genet Genomes 12(3):36

    Article  Google Scholar 

  • Forsline PL, Aldwinckle HS, Dickson EE, Luby JJ, Hokanson SC (2003) Collection, maintenance, characterization, and utilization of wild apples of Central Asia. Hort Rev: Westport Then New York 29:1–62

    Google Scholar 

  • Forte AV, Ignatov AN, Ponomarenko VV, Dorokhov DB, Savelyev NI (2002) Phylogeny of the Malus (apple tree) species, inferred from the morphological traits and molecular DNA analysis. Russ J Genet 38(10):1150–1161

    Article  CAS  Google Scholar 

  • Fu M, Ma F (2012) Characterization of the genetic relationships among biotypes of Malus prunifolia using simple sequence repeat marker. Sci Hort 146:169–174

    Article  Google Scholar 

  • Gao Y, Liu F, Wang K, Wang D, Gong X, Liu L, Richards CM, Henk AD, Volk GM (2015) Genetic diversity of Malus cultivars and wild relatives in the Chinese National Repository of Apple Germplasm Resources. Tree Genet Genomes 11(5):106

    Article  Google Scholar 

  • Gasi F, Simon S, Pojskic N, Kurtovic M, Pejic I (2010) Genetic assessment of apple germplasm in Bosnia and Herzegovina using microsatellite and morphologic markers. Sci Hortic 126(2):164–171

    Article  Google Scholar 

  • Gharghani A, Zamani Z, Talaie A, Oraguzie NC, Fatahi R, Hajnajari H, Wiedow C, Gardiner SE (2009) Genetic identity and relationships of Iranian apple (Malus × domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet Resour Crop Evol 56(6):829–842

    Article  CAS  Google Scholar 

  • Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96(8):1069–1076

    Article  CAS  Google Scholar 

  • Harris SA, Robinson JP, Juniper BE (2002) Genetic clues to the origin of the apple. Trends Genet 18(8):426–430

    Article  CAS  PubMed  Google Scholar 

  • Höfer M, Ali MA, Sellmann J, Peil A (2014) Phenotypic evaluation and characterization of a collection of Malus species. Genet Resour Crop Evol 61(5):943–964

    Article  Google Scholar 

  • Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97(5–6):671–683

    Article  CAS  Google Scholar 

  • Hokanson SC, Lamboy WF, Szewc-McFadden AK, McFerson JR (2001) Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids. Euphytica 118(3):281–294

    Article  CAS  Google Scholar 

  • Hooker JD (1879) The Flora of British India. II L Reeve and Co Ltd NR, Ashford

    Google Scholar 

  • Kishore DK, Randhawa SS (1993) Wild germplasm of temperate fruits. In: Chadha KL, Pareek OP (eds) Advances in Horticulture vol 1—fruit crops part 1. Malhotra Publishing House, New Delhi, pp 227–241

    Google Scholar 

  • Kishore DK, Pramanick KK, Sharma SK (2005) Significance of crab apples in the improvement of apples. Acta Hortic 696:39–41

    Article  Google Scholar 

  • Kishore DK, Pramanick KK, Singh AK, Singh R, Verma JK (2015) Chilling unit accumulation at Shimla, Himachal Pradesh, India-A predominantly apple (Malus × domestica Borkh) growing region. Int J Fruit Sci 15(2):117–128

    Article  Google Scholar 

  • Korban S, Chen H, Hammerschlag F, Litz RE (1992) Apple. In: Biotechnology of perennial fruit crops. CAB International Cambridge, UK, pp 203–227

  • Li FP, Lee YS, Kwon SW, Li G, Park YJ (2014) Analysis of genetic diversity and trait correlations among Korean landrace rice (Oryza sativa L.). Genet Mol Res 13(3):6316–6331

    Article  CAS  PubMed  Google Scholar 

  • Liang W, Dondini L, De Franceschi P, Paris R, Sansavini S, Tartarini S (2015) Genetic diversity, population structure and construction of a core collection of apple cultivars from Italian germplasm. Plant Mol Biol Report 33(3):458–473

    Article  CAS  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol Breed 10(4):217–241

    Article  CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Mondini L, Noorani A, Pagnotta MA (2009) Assessing plant genetic diversity by molecular tools. Diversity 1(1):19–35

    Article  CAS  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30(2):194

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106(949):283–292

    Article  Google Scholar 

  • Omasheva MY, Flachowsky H, Ryabushkina NA, Pozharskiy AS, Galiakparov NN, Hanke MV (2017) To what extent do wild apples in Kazakhstan retain their genetic integrity? Tree Genet Genomes 13(3):52

    Article  Google Scholar 

  • Oraguzie NC, Gardiner SE, Basset HC, Stefanati M, Ball RD, Bus VG, White AG (2001) Genetic diversity and relationships in Malus sp. germplasm collections as determined by randomly amplified polymorphic DNA. J Am Soc Hortic Sci 126(3):318–328

    Article  CAS  Google Scholar 

  • Ostrowski MF, David J, Santoni S, Mckhann H, Reboud X, Le Corre V, Camilleri C, Brunel D, Bouchez D, Faure B, Bataillon T (2006) Evidence for a large-scale population structure among accessions of Arabidopsis thaliana: possible causes and consequences for the distribution of linkage disequilibrium. Mol Ecol 15(6):1507–1517

    Article  CAS  PubMed  Google Scholar 

  • Peakall RO, Smouse PE (2006) GENALEX 6: genetic analysis in Excel: Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295

    Article  Google Scholar 

  • Pereira-Lorenzo S, Ramos-Cabrer AM, Díaz-Hernández MB (2007) Evaluation of genetic identity and variation of local apple cultivars (Malus × domestica Borkh) from Spain using microsatellite markers. Genet Resour Crop Evol 54(2):405–420

    Article  CAS  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2010) DARwin software. http://www.darwin.cirad.fr/darwin

  • Phipps JB, Robertson KR, Smith PG, Rohrer JR (1990) A checklist of the subfamily Maloideae (Rosaceae). Can J Bot 68(10):2209–2269

    Article  Google Scholar 

  • Potts SM, Han Y, Khan MA, Kushad MM, Rayburn AL, Korban SS (2012) Genetic diversity and characterization of a core collection of Malus germplasm using simple sequence repeats (SSRs). Plant Mol Biol Report 30(4):827–837

    Article  Google Scholar 

  • Pramanick KK, Kishore DK, Singh R, Kumar J (2012) Performance of apple (Malus x domestica Borkh) cv. Red Spur on a new apple rootstock in high density planting. Sci Hortic 133:37–39

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ram RD, Randhawa SS (1979) Resistance of different species of pome and stone fruits to powdery mildew incited by Podosphaera leucotricha (Ell. and Ev.) Salm [India]. Sci Cult 45:256

    Google Scholar 

  • Rana JC, Pradheep K, Verma VD (2007) Naturally occurring wild relatives of temperate fruits in Western Himalayan region of India: an analysis. Biodivers Conserv 16(14):3963–3991

    Article  Google Scholar 

  • Rana JC, Chahota RK, Sharma V, Rana M, Verma N, Verma B, Sharma TR (2015) Genetic diversity and structure of Pyrus accessions of Indian Himalayan region based on morphological and SSR markers. Tree Genet Genomes 11(1):821

    Article  Google Scholar 

  • Randhawa SS (1987) Wild germplasm of pome and stone fruits. IARI Regional Station Shimla, Himachal Pradesh, p 51

    Google Scholar 

  • Randhawa SS, Kishore DK (1986) Preliminary evaluation of native Malus baccata types as rootstocks. In: Chadha TR, Bhutani BP, Kaul JL (eds) Advances in research on temperate fruits. Dr YS Parmar University of Horticulture and Forestry, Solan, pp 85–93

    Google Scholar 

  • Randhawa SS, Ram RD (1977) Potentiality of the indigenous germplasm in the improvement of pome and stone fruits. In: Nijjar GS (ed) Fruit Breeding in India. Oxford & IBH Publishing Company, New Delhi, pp 131–138

    Google Scholar 

  • Reim S, Proft A, Heinz S, Höfer M (2012) Diversity of the European indigenous wild apple Malus sylvestris (L.) MILL. in the East Ore Mountains (Osterzgebirge), Germany: I. Morphological characterization. Genet Resour Crop Evol 59(6):1101–1114

    Article  Google Scholar 

  • Richards CM, Volk GM, Reilley AA, Henk AD, Lockwood DR, Reeves PA, Forsline PL (2009) Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genet Genomes 5(2):339–347

    Article  Google Scholar 

  • Robinson JP, Harris SA, Juniper BE (2001) Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh. Plant Syst Evol 226(1–2):35–58

    Article  CAS  Google Scholar 

  • Sharma SK, Kishore DK, Pramanick KK (2006) Utilization of indigenous crab apples for the management of foliar and soil borne diseases. In: Proceedings of the national symposium on production, utilization and export of underutilized fruits with commercial potentialities, Kalyani, Nadia, West Bengal, India, 22–24 Nov 2006, pp 205–208. Bidhan Chandra Krishi Viswavidyalaya, Nadia, West Bengal

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MP, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet Genomes 2(4):202–224

    Article  Google Scholar 

  • Szczecińska M, Sramko G, Wołosz K, Sawicki J (2016) Genetic diversity and population structure of the rare and endangered plant species Pulsatilla patens (L.) Mill in East Central Europe. PLoS One 11(3):e0151730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanya P, Taeprayoon P, Hadkam Y, Srinives P (2011) Genetic diversity among Jatropha and Jatropha-related species based on ISSR markers. Plant Mol Biol Report 29(1):252–264

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S (2010) The genome of the domesticated apple (Malus × domestica Borkh). Nature Genet 42(10):833

    Article  CAS  PubMed  Google Scholar 

  • Vinatzer BA, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab-resistant accessions in Malus germplasm. Plant Breed 123(4):321–326

    Article  CAS  Google Scholar 

  • Volk GM, Henk AD, Richards CM, Forsline PL, Chao CT (2013) Malus sieversii: a diverse Central Asian apple species in the USDA-ARS national plant germplasm system. HortScience 48(12):1440–1444

    Article  Google Scholar 

  • Wang S, Liu Y, Ma L, Liu H, Tang Y, Wu L, Wang Z, Li Y, Wu R, Pang X (2014) Isolation and characterization of microsatellite markers and analysis of genetic diversity in Chinese jujube (Ziziphus jujuba Mill.). PLoS One 9(6):e99842

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Chen X, He T, Liu X, Feng T, Yuan Z (2007) Genetic structure of Malus sieversii population from Xinjiang, China, revealed by SSR markers. J Genet Genom 34(10):947–955

    Article  CAS  Google Scholar 

  • Zhang JJ, Shu QY, Liu ZA, Ren HX, Wang LS, De Keyser E (2012a) Two EST-derived marker systems for cultivar identification in tree peony. Plant Cell Rep 31(2):299–310

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Li J, Zhao Y, Korban SS, Han Y (2012b) Evaluation of genetic diversity in Chinese wild apple species along with apple cultivars using SSR markers. Plant Mol Biol Report 30(3):539–546

    Article  CAS  Google Scholar 

  • Zoratti L, Palmieri L, Jaakola L, Häggman H (2015) Genetic diversity and population structure of an important wild berry crop. AoB Plants 1:7

    Google Scholar 

Download references

Acknowledgements

The senior author duly acknowledges the Post Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi for providing facilities and Department of Science and Technology, Govt. of India for providing INSPIRE Fellowship. Authors duly acknowledge the Station-Heads and In-Charges CITH RS, Mukteshwar, IARI RS, Shimla and NBPG RS, Phagli for sparing the germplasm and providing help during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, C., Singh, S.K., Singh, R. et al. Genetic diversity and population structure analysis of wild Malus genotypes including the crabapples (M. baccata (L.) Borkh. & M. sikkimensis (Wenzig) Koehne ex C. Schneider) collected from the Indian Himalayan region using microsatellite markers. Genet Resour Crop Evol 66, 1311–1326 (2019). https://doi.org/10.1007/s10722-019-00780-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-019-00780-y

Keywords

Navigation