Skip to main content
Log in

Numerical Analysis of the Stability of a Laminated Composite with Uniaxially Compressed Reinforcement Plies

  • Published:
International Applied Mechanics Aims and scope

The three-dimensional linearized theory of stability and a piecewise-homogeneous material model are used to determine numerically the stability-critical parameters of a laminated composite with compressed reinforcement plies. Mixed boundary conditions (regular material structure and symmetric surface loading) on the sides of a composite specimen and boundary conditions for stresses on one side that is free of stresses are analyzed. It is established that the critical load depends on the ratio of the geometrical and mechanical characteristics of the composite components and the composite specimen as a whole. The effect of the inhomogeneity of the initial state due to the surface loading on the buckling modes is studied. It is shown that the composite undergoes microbuckling near the loaded surface with buckling modes damped with distance from the end, which is the end-crushing failure mechanism in composites

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kyiv (1986).

    Google Scholar 

  2. A. N. Guz, Fundamentals of the Fracture Mechanics of Compressed Composites [in Russian], in two vols., Litera, Kyiv (2008).

  3. A. N. Guz and Yu. V. Kokhanenko, “Numerical analysis of stability problems for composites (review),” Prikl. Mekh., 40, No. 11, 117–126 (2004).

    MATH  Google Scholar 

  4. Ya. M. Grigorenko, Yu. N. Shevchenko, A. T. Vasilenko, et al., Numerical Methods, Vol. 11 of the 12-volume series Mechanics of Composite Materials [in Russian], A.S.K., Kyiv (2002).

  5. V. S. Zelenskii, V. A. Dekret, and V. M. Bystrov, “Stability of a composite laminate at uniaxial loading,” in: Trans. Dniprodzerzhinsk State Technical University [in Ukrainian], Issue 2(19) (Mathematical Problems of Engineering Mechanics), DDTU, Dniprodzerzhinsk (2012), pp. 49–53.

  6. Yu. V. Kokhanenko, “Brittle end-crushing failure of composites,” Dokl. AN SSSR, 296, No. 4, 805–808 (1987).

    Google Scholar 

  7. J. E. Akin, Finite Element Analysis Concepts: via SolidWorks, World Scientific, Hackensack, NJ (2010).

    Book  Google Scholar 

  8. E. J. Barbero, Finite Element Analysis of Composite Materials Using ANSYS, CRC Press (2013), http://barbero.cadec-online.com/feacm-ansys

  9. E. Yu. Bashchuk and V. Yu. Baichuk, “Influence of the inhomogeneity of the principal stress state on the critical loads of a plate with a crack,” Int. Appl. Mech., 49, No. 3, 328–336 (2013).

    Article  ADS  Google Scholar 

  10. N. A. Fleck, “Compressive failure of fiber composites,” Adv. Appl. Mech., 33, 43–117 (1997).

    Article  Google Scholar 

  11. L. B. Greszczuk, “Microbuckling failure of lamina-reinforced composites,” in: 3rd Conf. on Composite Materials: Testing and Design, ASTM STP N 546, Philadelphia (Pa) (1974), pp. 5–29.

  12. L. B. Greszczuk, “Microbuckling failure of circular fiber-reinforced composites,” AIAA J., 13, 1311–1318 (1975).

    Article  ADS  Google Scholar 

  13. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer-Verlag, Berlin (1999).

    Book  MATH  Google Scholar 

  14. A. N. Guz and V. A. Dekret, “On two models in the three-dimensional theory of stability of composites,” Int. Appl. Mech., 44, No. 8, 839–854 (2008).

    Article  ADS  Google Scholar 

  15. A. N. Guz, “On study of nonclassical problems of fracture and failure mechanics and related mechanisms,” Int. Appl. Mech., 45, No. 1, 1–31 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. N. Guz, “Setting up a theory of stability of fibrous and laminated composites,” Int. Appl. Mech., 45, No. 6, 587–613 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  17. A. N. Guz, “Stability of elastic bodies under omnidirectional compression (review),” Int. Appl. Mech., 48, No. 3, 241–293 (2012).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. A. N. Guz, I. A. Guz, A. V. Men’shikov, and V. A. Men’shikov, “Three-dimensional problems in the dynamic fracture mechanics of materials with interface cracks (review),” Int. Appl. Mech., 49, No. 1, 1–61 (2013).

    Article  ADS  MATH  Google Scholar 

  19. P. M. Jelf and N. A. Fleck, “Compression failure mechanisms in unidirectional composites,” J. Comp. Mater., 26, No. 18, 2706–2726 (1992).

    Article  Google Scholar 

  20. Yu. V. Kokhanenko and V. M. Bystrov, “Edge effect in a laminated composite with longitudionally compressed laminas,” Int. Appl. Mech., 42, No. 8, 922–927 (2006).

    Article  ADS  Google Scholar 

  21. N. K. Naik and R. S. Kumar, “Compressive strength of unidirectional composites: evaluation and comparison of prediction models,” Comp. Struct., 46, 299–308 (1999).

    Article  Google Scholar 

  22. M. D. Nestorovic and N. Triantafyllidis, “Onset of failure in finitely strained layered composites subjected to combined normal and shear loading,” J. Mech. Phys. Solids, 52, 941–974 (2004).

    Article  ADS  MATH  Google Scholar 

  23. S. Pissanetzky, Sparse Matrix Technology, Academic Press, London (1984).

    MATH  Google Scholar 

  24. B. W. Rosen, “Mechanics of composite strengthening,” in: Fiber Composite Materials, American Society of Metals, Metals Park, OH (1965), pp. 37–75.

    Google Scholar 

  25. C. Soutis, Compressive Behavior of Composites, Rapra Technology, London (1997).

    Google Scholar 

  26. N. Triantafyllidis and W. C. Scynaidt, “Comparison of microscopic and macroscopic instabilities in a class of two-dimensional periodic composites,” J. Mech. Phys. Solids, 41, No. 9, 1533–1565 (1993).

    Article  ADS  MATH  Google Scholar 

  27. T. J. Vogler, S.-Y. Hsu, and S. Kyriakides, “Composite failure under combined compression and shear,” Int. J. Solids Struct., 37, No. 12, 1765–1791 (2000).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ferret.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 50, No. 5, pp. 80–91, September–October 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferret, V.A., Zelenskii, V.S. & Bistrov, V.M. Numerical Analysis of the Stability of a Laminated Composite with Uniaxially Compressed Reinforcement Plies. Int Appl Mech 50, 549–557 (2014). https://doi.org/10.1007/s10778-014-0653-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-014-0653-7

Keywords

Navigation