Skip to main content
Log in

Quadcopter Path Following Control. A Maneuvering Approach

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A standard control systems objective is to achieve stable motion on a trajectory in the state-control space configuration compatible with the system dynamics. Path following and trajectory tracking are typical methods to accomplish this goal. This work uses a version of the path following technique, called maneuvering, to drive a quadrotor to the desired path. In maneuvering, the desired path is a geometric curve parameterized in terms of the path-variable. The path-variable can be employed to fulfill an assignment of speed or acceleration on the path. To obtain experimental results using an indoor positioning system, a quadrotor velocity observer becomes necessary; thus, a velocity observer and a constant disturbance estimator, based on the immersion and invariance technique (Astolfi et al. 2008), are proposed to complement the maneuvering controller. Timescale separation between the quadrotor translational and rotational dynamics is instrumental in the closed-loop stability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguiar, A.P., Dacić, D.B., Hespanha, J.P., Kokotović, P.: Path-following or reference tracking?: an answer relaxing the limits to performance. In: IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, 5–7 July 2004, pp. 167–172. https://doi.org/10.1016/S1474-6670(17)31970-5. http://www.sciencedirect.com/science/article/pii/S1474667017319705 (2004)

  2. Aguiar, A.P., Hespanha, J.P.: Logic-based switching control for trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. In: Proceedings of the 2004 American Control Conference, vol. 4, pp 3004–3010 (2004)

  3. Aguiar, A.P., Hespanha, J.P.: Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control 52(8), 1362–1379 (2007). https://doi.org/10.1109/TAC.2007.902731

    Article  MathSciNet  MATH  Google Scholar 

  4. Aguiar, A.P., Hespanha, J.P., Kokotovic, P.V.: Path-following for nonminimum phase systems removes performance limitations. IEEE Trans. Autom. Control 50(2), 234–239 (2005). https://doi.org/10.1109/TAC.2004.841924

    Article  MathSciNet  MATH  Google Scholar 

  5. Al-Hiddabi, S.A., McClamroch, N.H.: Tracking and maneuver regulation control for nonlinear nonminimum phase systems: application to flight control. IEEE Trans. Control Syst. Technol. 10 (6), 780–792 (2002). https://doi.org/10.1109/TCST.2002.804120

    Article  Google Scholar 

  6. Astolfi, A., Karagiannis, D., Ortega, R.: Nonlinear and Adaptive Control with Applications. Springer, London (2008)

    Book  MATH  Google Scholar 

  7. Chirikjian, G.S.: Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods and Modern Applications, vol. 2. Springer Science & Business Media (2011)

  8. Corona-Sanchez, J.J., Rodríguez-Cortés, H.: Path following control for the cartesian position of the quadrotor. In: Memoria XV Congreso Latinoamericano de Control Automatico (2012)

  9. Corona-Sánchez, J.J., Rodríguez-Cortés, H.: An output maneuvering approach to control the cartesian position of the quadrotor helicopter. In: 52nd IEEE Conference on Decision and Control, pp 1640–1645 (2013). https://doi.org/10.1109/CDC.2013.6760117

  10. Encarnacao, P., Pascoal, A.: Combined trajectory tracking and path following: an application to the coordinated control of autonomous marine craft. In: Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), vol. 1, pp 964–969 (2001), https://doi.org/10.1109/.2001.980234

  11. Encarnacao, P., Pascoal, A., Arcak, M.: Path following for marine vehicles in the presence of unknown currents1. IFAC Proc. 33(27), 507–512 (2000). https://doi.org/10.1016/S1474-6670(17)37980-6. http://www.sciencedirect.com/science/article/pii/S1474667017379806. 6th IFAC Symposium on Robot Control (SYROCO 2000), Vienna, Austria, 21–23 September 2000

    Article  Google Scholar 

  12. Guerrero-Bonilla, L., Mohta, K., Bhattacharya, S., Kumar, V.: Flight trajectory tracking and recovery in presence of large disturbances. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp 1438–1446 (2017). https://doi.org/10.1109/ICUAS.2017.7991473

  13. Hauser, J., Hindman, R.: Maneuver regulation from trajectory tracking: feedback linearizable systems*. IFAC Proc. 28(14), 595–600 (1995).https://doi.org/10.1016/S1474-6670(17)46893-5. http://www.sciencedirect.com/science/article/pii/S1474667017468935. 3rd IFAC Symposium on Nonlinear Control Systems Design 1995, Tahoe City, CA, USA, 25–28 June 1995

    Article  Google Scholar 

  14. Khalil, H.K.: Nonlinear Systems. Prentice Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  15. Lee, T., Leok, M., McClamroch, N.H.: Nonlinear robust tracking control of a quadrotor uav on se(3). Asian J. Control 15(2), 391–408 (2013). https://doi.org/10.1002/asjc.567

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, W., Qian, C.: Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems. Syst. Control Lett. 39(5), 339–351 (2000). https://doi.org/10.1016/S0167-6911(99)00115-2. http://www.sciencedirect.com/science/article/pii/S0167691199001152

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, H., Bai, Y., Lu, G., Shi, Z., Zhong, Y.: Robust tracking control of a quadrotor helicopter. J. Intell. Robot. Syst. 75(3), 595–608 (2014). https://doi.org/10.1007/s10846-013-9838-2

    Article  Google Scholar 

  18. Mendoza-Soto, J.L., Corona-Sánchez, J.J., Rodríguez-Cortés, H.: Partial state robust output maneuvering controller applied to a quadcopter vehicle. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp 362–368, Miami (2017)

  19. Radmanesh, M., Kumar, M., Sarim, M.: On the effect of different splines on way-point navigation of quad-copters. In: Proceedings of ASME 2016 Dynamic Systems and Control Conference, pp 1–10, Minneapolis (2016)

  20. Raffo, G.V., Ortega, M.G., Rubio, F.R.: Nonlinear \(h_{\infty }\) controller for the quad rotor helicopter with input coupling. In: Preprints of the 18th IFAC World Congress, pp. 13,834–13,839. Milano (Italy) (2011)

  21. Rezapour, E., Hofmann, A., Pettersen, K.Y.: Maneuvering control of planar snake robots based on a simplified model. In: 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), pp 548–555 (2014). https://doi.org/10.1109/ROBIO.2014.7090388

  22. Sepulchre, R., Jankovic, M., Kokotovic, P.V.: Constructive Nonlinear Control. Springer, London (1997)

    Book  MATH  Google Scholar 

  23. Skjetne, R., Fossen, T.I., Kokotovic, P.: Output maneuvering for a class of nonlinear systems. IFAC Proc. 35(1), 501–506 (2002). https://doi.org/10.3182/20020721-6-ES-1901.00245. http://www.sciencedirect.com/science/article/pii/S1474667015386663. 15th IFAC World Congress

    Article  MATH  Google Scholar 

  24. Skjetne, R., Fossen, T.I., Kokotovic, P.V.: Robust output maneuvering for a class of nonlinear systems. Automatica 40(3), 373–383 (2004). https://doi.org/10.1016/j.automatica.2003.10.010. http://www.sciencedirect.com/science/article/pii/S0005109803003467

    Article  MathSciNet  MATH  Google Scholar 

  25. Skjetne, R., Teel, A.R.: Maneuvering dynamical systems by sliding-mode control. In: Proceedings of the 2004 American Control Conference, vol. 2, pp 1277–1282 (2004)

  26. Wei, C., Wu, Y., Wang, Q.: Robust practical output maneuvering for a class of nonlinear systems. In: 2006 6th World Congress on Intelligent Control and Automation, vol. 1, pp 790–794 (2006), https://doi.org/10.1109/WCICA.2006.1712451

  27. Wei, C., Wu, Y., Fei, S.: Adaptive practical output maneuvering control for a class of nonlinear systems. J. Syst. Sci. Complex. 20(1), 75–84 (2007). https://doi.org/10.1007/s11424-007-9006-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was funded by CONACyT through a posdoctoral research fellowship to Dr. José Luis Mendoza Soto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Mendoza-Soto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza-Soto, J.L., Corona-Sánchez, J.J. & Rodríguez- Cortés, H. Quadcopter Path Following Control. A Maneuvering Approach. J Intell Robot Syst 93, 73–84 (2019). https://doi.org/10.1007/s10846-018-0801-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0801-0

Keywords

Navigation