Skip to main content
Log in

Electronic properties of polyvinylpyrrolidone at the zinc oxide nanoparticle surface

PVP in ZnO dispersions and nanoparticulate ZnO thin films for thin film transistors

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We investigated the electrical effects of polyvinylpyrrolidone (PVP), used as a dispersion agent in zinc oxide (ZnO) nanodispersions. We found PVP reduces the high surface conductivity and atmospheric sensitivity. Compared with polymer free ZnO thin films, the nanoparticulate layers with PVP exhibit a smaller density of thermally active charge carriers, a reduced density of trap states, and a Fermi level shift toward the valence band, yielding improved performance, vanishing hysteresis characteristics and reduced atmospheric sensitivity in thin film transistors (TFT). In addition, we discuss the attachment of PVP to the ZnO surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ellmer K (2001) J Phys D 34(21):3097. doi:https://doi.org/10.1088/0022-3727/34/21/301

    Article  CAS  Google Scholar 

  2. Wang ZL (2009) Mater Sci Eng R 64(3-4):33. doi:https://doi.org/10.1016/j.mser.2009.02.001

    Article  Google Scholar 

  3. Tellier J, Kuscer D, Malic B, Cilensek J, Skarabot M, Kovac J, Goncalves G, Musevic I, Kosec M (2010) Thin Solid Films 518(18):5134. doi:https://doi.org/10.1016/j.tsf.2010.03.010

    Article  CAS  Google Scholar 

  4. Meyers ST, Anderson JT, Hung CM, Thompson J, Wager JF, Keszler DA (2008) J Am Chem Soc 130(51):17603. doi:https://doi.org/10.1021/ja808243k

    Article  CAS  Google Scholar 

  5. Theissmann R, Bubel S, Sanlialp M, Busch C, Schierning G, Schmechel R (2011) Thin Solid Films 519:5623. doi:https://doi.org/10.1016/j.tsf.2011.02.073

    Article  CAS  Google Scholar 

  6. Janotti A, Van de Walle CG (2009) Rep Prog Phys 72(12):126501. doi:https://doi.org/10.1088/0034-4885/72/12/126501

    Article  Google Scholar 

  7. O’Brien S, Nolan MG, Copuroglu M, Hamilton JA, Povey I, Pereira L, Martins R, Fortunato E, Pemble M (2010) Thin Solid Films 518(16):4515. doi:https://doi.org/10.1016/j.tsf.2009.12.020

    Article  Google Scholar 

  8. Kajikawa Y (2006) J Cryst Growth 289(1):387. doi:https://doi.org/10.1016/j.jcrysgro.2005.11.089

    Article  CAS  Google Scholar 

  9. Wang XH, Ding YF, Zhang J, Zhu ZQ, You SZ, Chen SQ, Zhu JZ (2006) Sensors Actuators B 115(1):421. doi:https://doi.org/10.1016/j.snb.2005.10.005

    Article  CAS  Google Scholar 

  10. Chaabouni F, Abaab M, Rezig B (2004) Sensors Actuators B 100(1-2):200. doi:https://doi.org/10.1016/j.snb.2003.12.059

    Article  CAS  Google Scholar 

  11. McCluskey MD, Jokela SJ (2007) Physica B Condens Matter 401:355. doi:https://doi.org/10.1016/j.physb.2007.08.186

    Article  Google Scholar 

  12. Walther S, Schafer S, Jank MPM, Thiem H, Peukert W, Frey L, Ryssel H (2010) Microelectron Eng 87(11):2312. doi:https://doi.org/10.1016/j.mee.2010.03.009

    Article  CAS  Google Scholar 

  13. Koniger T, Munstedt H (2009) J Mater Sci 44(11):2736. doi:https://doi.org/10.1007/s10853-009-3357-3

    Article  Google Scholar 

  14. Mechau N, Bubel S, Nikolova D, Hahn H (2010) Physica Status Solidi A 207(7):1684. doi:https://doi.org/10.1002/pssa.200983768

    Article  CAS  Google Scholar 

  15. Okamura K, Mechau N, Nikolova D, Hahn H (2008) Appl Phys Lett 93(8):083105. doi:https://doi.org/10.1063/1.2972121

    Article  Google Scholar 

  16. Bubel S, Nikolova D, Mechau N, Hahn H (2009) J Appl Phys 105(6):064514. doi:https://doi.org/10.1063/1.3097754

    Article  Google Scholar 

  17. Guo L, Yang SH, Yang CL, Yu P, Wang JN, Ge WK, Wong GKL (2000) Chem Mater 12(8):2268. doi:https://doi.org/10.1021/cm9907817

    Article  CAS  Google Scholar 

  18. Shockley W (1952) Proc Inst Radio Eng 40(11):1365. doi:https://doi.org/10.1109/JRPROC.1952.273964

    Google Scholar 

  19. Sze SM, Kwok NK (2007) Physics of semiconductor devices, 3rd edn. Wiley, New York. ISBN-13: 978-0471143239

  20. Bubel S, Mechau N, Hahn H, Schmechel R (2010) J Appl Phys 108(12):124502. doi:https://doi.org/10.1063/1.3524184

    Article  Google Scholar 

  21. Li QH, Liang YX, Wan Q, Wang TH (2004) Appl Phys Lett 85(26):6389. doi:https://doi.org/10.1063/1.1840116

    Article  CAS  Google Scholar 

  22. Fan ZY, Wang DW, Chang PC, Tseng WY, Lu JG (2004) Appl Phys Lett 85(24):5923. doi:https://doi.org/10.1063/1.1836870

    Article  CAS  Google Scholar 

  23. Neumann F, Genenko YA, Melzer C, von Seggern H (2006) J Appl Phys 100(8):084511. doi:https://doi.org/10.1063/1.2360383

    Article  Google Scholar 

  24. Genenko YA, Yampolskii SV, Melzer C, Stegmaier K, von Seggern H (2010) Phys Rev B 81(12):125310. doi:https://doi.org/10.1103/PhysRevB.81.125310

    Article  Google Scholar 

  25. Ashkenov N, Mbenkum BN, Bundesmann C, Riede V, Lorenz M, Spemann D, Kaidashev EM, Kasic A, Schubert M, Grundmann M, Wagner G, Neumann H, Darakchieva V, Arwin H, Monemar B (2003) J Appl Phys 93(1):126. https://doi.org/10.1063/1.1526935

    Article  CAS  Google Scholar 

  26. Michaelson HB (1978) Ibm J Res Dev 22(1):72

    Article  CAS  Google Scholar 

  27. Jacobi K, Zwicker G, Gutmann A (1984) Surf Sci 141(1):109

    Article  CAS  Google Scholar 

  28. Sundaram KB, Khan A (1997) J Vac Sci Technol A 15(2):428

    Article  CAS  Google Scholar 

  29. Zmeskal O, Nespurek S, Weiter M (2007) Chaos Solitons Fractals 34(2):143. doi:https://doi.org/10.1016/j.chaos.2006.04.006

    Article  Google Scholar 

  30. Nespurek S, Zmeskal O, Sworakowski J (2008) Thin Solid Films 516(24):8949. doi:https://doi.org/10.1016/j.tsf.2007.11.070

    Article  CAS  Google Scholar 

  31. Lampert MA, Mark P (1970) Current injection in solids. Academic Press, New York and London. ISBN-13: 978-0124353503

  32. Gould RD, Rahman MS (1981) J Phys D 14(1):79. doi:https://doi.org/10.1088/0022-3727/14/1/011

    Article  CAS  Google Scholar 

  33. Mahmood FS, Gould RD, Hassan AK, Salih HM (1995) Thin Solid Films 270(1-2):376. doi:https://doi.org/10.1016/0040-6090(95)06928-3

    Article  CAS  Google Scholar 

  34. Allen MW, Swartz CH, Myers TH, Veal TD, McConville CF, Durbin SM (2010) Phys Rev B 81(7):075211. doi:https://doi.org/10.1103/PhysRevB.81.075211

    Article  Google Scholar 

  35. Jetson R, Yin K, Donovan K, Zhu ZT (2010) Mater Chem Phys 124(1):417. doi:https://doi.org/10.1016/j.matchemphys.2010.06.058

    Article  CAS  Google Scholar 

  36. Koch U, Fojtik A, Weller H, Henglein A (1985) Chem Phys Lett 122(5):507. doi:https://doi.org/10.1016/0009-2614(85)87255-9

    Article  CAS  Google Scholar 

  37. Look DC (2007) Surf Sci 601(23):5315. doi:https://doi.org/10.1016/j.susc.2007-09.030

    Article  CAS  Google Scholar 

  38. Yan WJ, Mechau N, Hahn H, Krupke R (2010) Nanotechnology 21(11):115501. doi:https://doi.org/10.1088/0957-4484/21/11/115501

    Article  Google Scholar 

  39. Cho PS, Kim KW, Lee JH (2006) J Electroceram 17(2-4):975. doi:https://doi.org/10.1007/s10832-006-8146-7

    Article  CAS  Google Scholar 

  40. Devi GS, Subrahmanyam VB, Gadkari SC, Gupta SK (2006) Analytica Chimica Acta 568(1-2):41. doi:https://doi.org/10.1016/j.aca.2006.02.040

    Article  CAS  Google Scholar 

  41. Gong H, Hu JQ, Wang JH, Ong CH, Zhu FR (2006) Sensors Actuators B 115(1):247. doi:https://doi.org/10.1016/j.snb.2005.09.008

    Article  CAS  Google Scholar 

  42. Wang HT, Kang BS, Ren F, Tien LC, Sadik PW, Norton DP, Pearton SJ, Lin J (2005) Appl Phys Lett 86(24):243503. doi:https://doi.org/10.1063/1.1949707

    Article  Google Scholar 

  43. Christoulakis S, Suchea M, Koudoumas E, Katharakis M, Katsarakis N, Kiriakidis G (2006) Appl Surf Sci 252(15):5351. doi:https://doi.org/10.1016/j.apsusc.2005.12.071

    Article  CAS  Google Scholar 

  44. Wang CH, Chu XF, Wu MW (2006) Sensors Actuators B 113(1):320. doi:https://doi.org/10.1016/j.snb.2005.03.011

    Article  CAS  Google Scholar 

  45. Bie LJ, Yan XN, Yin J, Duan YQ, Yuan ZH (2007) Sensors Actuators B 126(2):604. doi:https://doi.org/10.1016/j.snb.2007.04.011

    Article  CAS  Google Scholar 

  46. Gorla CR, Emanetoglu NW, Liang S, Mayo WE, Lu Y, Wraback M, Shen H (1999) J Appl Phys 85(5):2595. doi:https://doi.org/10.1063/1.369577

    Article  CAS  Google Scholar 

  47. Zhang JH, Liu HY, Wang ZL, Ming NB, Li ZR, Biris AS (2007) Adv Funct Mater 17(18):3897. doi:https://doi.org/10.1002/adfm.200700734

    Article  CAS  Google Scholar 

  48. Liu D, Wu W, Qiu Y, Yang S, Xiao S, Wang QQ, Ding L, Wang J (2008) Langmuir 24(9):5052. doi:https://doi.org/10.1021/la800074f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Dutch Polymer Institute (DPI), Netherlands is gratefully acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Bubel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bubel, S., Mechau, N. & Schmechel, R. Electronic properties of polyvinylpyrrolidone at the zinc oxide nanoparticle surface. J Mater Sci 46, 7776–7783 (2011). https://doi.org/10.1007/s10853-011-5757-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5757-4

Keywords

Navigation